Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.

See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Print Test (Only the test content will print)

Understanding Composite Functions

1.
$f(x)= -5x , g(x)= 4x - 15$. Find $f(g(3))$.
1. 18
2. -75
3. -15
4. 15
2.
$f(x) = sqrt(x+3)$ and $g(x)=2x$. Find $(f @ g)(4)$.
1. $2sqrt14$
2. $sqrt11$
3. $sqrt14$
4. $2sqrt7$
3.
Let $f(x) = x^2 + 6 and g(x) = (x+8)/x.$ Find $(g@f) (-7)$.
1. -55/7
2. 384/7
3. 295/49
4. 63/55
4.
If $f(x)=3x+7$ and $g(x)=2x-5$, find $g(f(-3))$.
1. -26
2. -9
3. -1
4. 10
5.
Find the domain of the composite function $f(g(x))$.

$f(x)= x+3$
$g(x)= 2/(x+6)$
1. $(-oo,3) uu (3,oo)$
2. $(-oo,oo)$
3. $(-oo,-6) uu (-6,3) uu (3,oo)$
4. $(-oo,-6) uu (-6,oo)$
6.
Find the domain of the composite function $(f@g)(x) if f(x)=x^2 and g(x)=sqrt(x+2)$.
1. $(-oo,oo)$
2. $(-2,oo)$
3. $[-2,oo)$
4. $(-oo,-2)$
7.
For x = -2, evaluate f(g(x)) - f(0), given that:

$f(x) = 2x + 5$
$g(x) = 4x$
1. -11
2. 6
3. -4
4. -16
8.
Given $f(x) = x+4, \ g(x) = x^2$ find $f(g(x-2))$.
1. $f(g(x-2))=x^2-4x+8$
2. $f(g(x-2))=x^2+x+2$
3. $f(g(x-2))=x+2$
4. $f(g(x-2))=x^2-4x+4$
9.
If $f(x)=3x-4$ and $f(g(x))=x$, then $g(x)$ is
1. $1/(3x-4)$
2. $(x+4)/3$
3. $3-4x$
4. $4x-3$
10.
If $g(x) = 4/(2-x) and (g@f)(x) = -2/x^2$, find $f(x)$.
1. $(2x^2)/(x^2+1)$
2. $(x-2)/x^2$
3. $2x^2 + 2$
4. $-1/(2(x^2 - 2))$
You need to be a HelpTeaching.com member to access free printables.