Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Complex Numbers (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Complex Numbers

1. 
To write a complex number in standard form, the real number part proceeds the imaginary number part.
  1. True
  2. False
2. 
Simplify the complex number radical expression [math]sqrt(-75)[/math].
  1. [math]-5sqrt3[/math]
  2. [math]5sqrt3[/math]
  3. [math]-5isqrt3[/math]
  4. [math]5isqrt3[/math]
3. 
Perform the operation for the complex number radical expression [math]sqrt(-64)+sqrt(-36)[/math].
  1. [math]-14i[/math]
  2. [math]14i[/math]
  3. [math]14[/math]
  4. [math]-14[/math]
4. 
Expand and simplify: [math](10-10i)(10+10i)[/math].
  1. [math]0[/math]
  2. [math]100-100i[/math]
  3. [math]200[/math]
  4. [math]-200i[/math]
5. 
Multiply [math]6+5i[/math] by its conjugate.
  1. [math]61[/math]
  2. [math]61i[/math]
  3. [math]36+22i+25i^2[/math]
  4. [math]82i^3[/math]
6. 
The point [math]5+7i[/math] is in which quadrant?
  1. [math]I[/math]
  2. [math]II[/math]
  3. [math]III[/math]
  4. [math]IV[/math]
7. 
Simplify the complex number expression [math]-25i^25 [/math].
  1. [math]-25[/math]
  2. [math]25[/math]
  3. [math]25i[/math]
  4. [math]-25i[/math]
8. 
Simplify the imaginary unit in the following expression: [math]i^25+i^17[/math].
  1. [math]sqrt(-1)[/math]
  2. [math]2i[/math]
  3. [math]-2i[/math]
  4. [math]-1[/math]
9. 
Expand and simplify: [math](10-7i)(10+7i)[/math].
  1. [math]149[/math]
  2. [math]-149i[/math]
  3. [math]100 - 49i[/math]
  4. [math]140i^2[/math]
10. 
Add or Subtract the complex number expression: [math](12+8i)-(11-4i)[/math].
This is not the FOIL method. Write your answer in the correct complex number form.
                
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page