##### Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.

See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

# Matrix Operations - Practice #3 (Grades 11-12)

Print Test (Only the test content will print)

## Matrix Operations - Practice #3

1.
If the matrix $[[2,8,12],[3,4,0],[8,10,4]]$ is multiplied by the scalar 1/2, what is the result?
1. $[[4,16,24],[6,8,0],[16,20,8]]$
2. $[[12,8,2],[0,4,3],[4,10,8]]$
3. $[[4,6,16],[16,8,20],[24,0,8]]$
4. $[[1,4,6],[1.5,2,0],[4,5,2]]$
2.
Perform the indicated operations. If the matrix does not exist, choose impossible.

$[[8,3],[-1,-1]]-[[0,-7],[6,2]]$
1. $[[-8,-10],[-7,-3]]$
2. $[[-3,10],[-7,8]]$
3. $"Impossible"$
4. $[[8,10],[-7,-3]]$
3.
Evaluate. $[(2, -3) , (-4, 2)]$ + $[ (-1, -5), ( 3, -2) ]$
1. $[(-1, -8), (-1, 0)]$
2. $[(1, -8), (-1,0)]$
3. $[(1, -8), (-7, 0)]$
4. None of the above
4.
Evaluate.
$[ [-1, 10, 4], [0, -2, 7]] + [ [8, -9, 0], [5, -4, 2]] -2 [ [7, -1, 4], [5, -2, -9]]$

5.
If Matrix A = $[(-3,1),(-2,4),(5,-1)]$ and Matrix B = $[(4,-3),(0,-2),(-2,4)]$, then what is 3A - 2B ?
1. $[(-1,-3),(-6,8),(11,5)]$
2. $[(-1,9),(-6,8),(11,5)]$
3. $[(-1,9),(-6,8),(11,-11)]$
4. $[(-17,9),(-6,16),(19,-11)]$
6.
Find the product, if possible. $[[2,0],[-3,5],[1,4]]*[[3],[-2]]$
1. $[[6,-19,-5]]$
2. $[[6],[-19],[-5]]$
3. $[[5,-5],[0,3]]$
4. Impossible
7.
Evaluate.
$[[-8, 4], [6, -4]] [[2, 3], [3, 5]] + [[9],[7]] [-2, 3]$

8.
Find the inverse of $A= [[9,3],[5,2]]$.

9.
Find the inverse of $A= [[2,3],[7,11]]$.

10.
Find the inverse of the matrix, if it exists.

$[[-4,-2],[7,8]]$
1. $"Does Not Exist"$
2. $[[4/9,1/9],[-7/18,-2/9]]$
3. $[[2/9,1/9],[-7/18,-4/19]]$
4. $[[-4/9,-1/9],[7/18,2/9]]$
You need to be a HelpTeaching.com member to access free printables.