Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Properties of Trig Functions (sin, cos, tan) (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Properties of Trig Functions (sin, cos, tan)

1. 
The Sine function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
2. 
The Sine function is
  1. even
  2. odd
  3. either
  4. neither
3. 
The Cosine function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
4. 
The Cosine function is
  1. even
  2. odd
  3. either
  4. neither
5. 
The Tangent function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
6. 
The Tangent function is
  1. even
  2. odd
  3. either
  4. neither
7. 
State the amplitude of the function [math]y=1/3cos(x-2)[/math]:
  1. [math]1/3[/math]
  2. [math]pi[/math]
  3. [math]-2[/math]
  4. [math]-pi[/math]
  5. none of these are correct
8. 
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math] f(x)=cos(2x)[/math] negative?
  1. [math]-3/4pi < x < -1/4pi, 1/4pi < x < 3/4pi[/math]
  2. [math]-pi < x < 0,0 < x < pi[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-1/2pi < x <0,1/2pi< x< pi[/math]
9. 
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math]f(x)=sinx[/math] negative?
  1. [math]0 < x < pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
10. 
Where are the vertical asymptotes located for [math]y = 2tan(x-pi/2) - 1, \ x in [-pi,pi]?[/math]
  1. No asymptotes in this region
  2. [math]x=0[/math]
  3. [math]x=-pi/2,pi/2[/math]
  4. [math]x=-pi,0,pi[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page