Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Applying Trigonometric Identities - Practice #2 (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Applying Trigonometric Identities - Practice #2

1. 
[math]cos^2x - 1 = -sin^2x[/math]
  1. True
  2. False
2. 
Simplify [math]tan x cos x[/math].
  1. [math]cos^2 x/ sin x[/math]
  2. [math]cot x[/math]
  3. [math]sin x[/math]
  4. [math]1 - sec ^2 x[/math]
3. 
Which expression is equivalent to [math]csc x(csc x - sin x)[/math]?
  1. [math]sec ^2 x - 1[/math]
  2. [math]cot ^2 x[/math]
  3. [math]tan ^2 x[/math]
  4. [math]1[/math]
4. 
Simplify [math]-4(sec^2 x - tan^2 x). [/math]
  1. [math]-4tan^2 x[/math]
  2. [math]4tan^2 x[/math]
  3. [math]4[/math]
  4. [math]-4[/math]
5. 
Simplify. [math](sec x - 1)/tan^2 x[/math]
  1. [math]cos x/(cos x + 1)[/math]
  2. [math]sin x/ (sin x + 1)[/math]
  3. [math]sin^2 /(sin x + 1)[/math]
  4. [math]1[/math]
6. 
Simplify the following:

[math](sec^2 theta-1)/sin^2theta[/math]
  1. [math]sin theta[/math]
  2. [math]tan^2 theta[/math]
  3. [math]sec^2 theta[/math]
  4. none of the above
7. 
Simplify [math](1-csc^2 x)/cot^2 x.[/math]
  1. [math]-1[/math]
  2. [math]1[/math]
  3. [math]tan^2 x[/math]
  4. [math]1/sin^4 x[/math]
8. 
Which expression is equivalent to 1?
  1. [math](1 + sin x)/sin x[/math]
  2. [math]1/sec^2 x +1/csc^2x[/math]
  3. [math]tan^2x - sec^2 x[/math]
  4. [math](cot x csc x)/sec x[/math]
9. 
Which expression is equivalent to [math]sin x/(1 + cos x) + sin x/(1 - cos x)[/math]?
  1. [math](2sinx)/(1+ cos^2 x)[/math]
  2. [math]2 sin x[/math]
  3. [math]2 csc x[/math]
  4. [math]-2 csc x[/math]
10. 
Which expression is equivalent to [math](sin2theta)/(1-cos2theta)[/math] ?
  1. [math] sin theta[/math]
  2. [math] cot theta[/math]
  3. [math] csc theta[/math]
  4. [math] cos theta[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page