Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Properties of Trig Functions (sec, csc, cot) (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Properties of Trig Functions (sec, csc, cot)

1. 
The Secant function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
2. 
The Secant function is
  1. even
  2. odd
  3. either
  4. neither
3. 
The Cosecant function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
4. 
The Cosecant function is
  1. even
  2. odd
  3. either
  4. neither
5. 
The Cotangent function has a period of
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
6. 
The Cotangent function is
  1. even
  2. odd
  3. either
  4. neither
7. 
The period for the function [math]y=-4+2cot(1/3 x-pi)[/math] is equal to:
  1. [math]pi[/math]
  2. [math]3pi[/math]
  3. [math](9pi)/2[/math]
  4. [math]pi/3[/math]
  5. none of these are correct
8. 
On the graph [math]y=sec (x-pi/4), x in [-pi,pi][/math], the vertical asymptotes are located at [math]x=[/math]
  1. [math]pi and 2pi[/math]
  2. [math]-pi/2 and pi/2[/math]
  3. [math]-pi/4 and (3pi)/4[/math]
  4. [math]-(3pi)/2 and -pi/4[/math]
  5. none of these are correct
9. 
What is the period of [math]y = 5csc(pi/2 x - (3pi)/2) + 1?[/math]
  1. [math]pi/2[/math]
  2. [math]4[/math]
  3. [math]3[/math]
  4. [math]1/2[/math]
10. 
What are the locations the vertical asymptotes of [math]y = 1/2 cot(2x) + 1, \ x in [-pi,pi] ?[/math]
  1. [math] x = 0 [/math]
  2. [math] x = -2, -1, 0, 1, 2[/math]
  3. [math] x =-pi, 0, pi [/math]
  4. [math] x = -pi, -pi/2, 0, pi/2, pi[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page