Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Algebra I Review, #2 (Grade 9)

Print Test (Only the test content will print)
Name: Date:

Algebra I Review, #2

1. 
A letter is that used to represent a number value in an expression or an equation is also known as a(n)                  .
  1. absolute value
  2. quantity
  3. equation
  4. variable
  5. none of the above
2. 
4y and 5x are like terms.
  1. True
  2. False
3. 
Which of the expressions below is equivalent to [math]4x^2-12x+9[/math] ?
  1. [math](2x+3)(2x-3)[/math]
  2. [math]"No" \ "Answer"[/math]
  3. [math](2x+3)^2[/math]
  4. [math]2x(2x-3)-3(2x-3)[/math]
4. 
Simplify.
5 + 6(m + 1)
  1. 6m + 11
  2. 6m + 6
  3. 11m + 11
  4. 11m + 1
5. 
Evaluate 6c + 5d - 4c - 3d + 3c - 6d when c = 4 and d = -2.



6. 
What is the value of [math](q^2+rt)-:(qr-2t)[/math] if q = -4, r = 3, and t = 8?
  1. -17/6
  2. -10/7
  3. -2/7
  4. -1/6
7. 
In the equation [math]3x+4=12[/math], [math]3x[/math] is a/an
  1. Term
  2. Coefficient
  3. Sum
  4. Operator
8. 
What do you call the number in front of the variable? For example, the -9 in -9y.
  1. term
  2. like term
  3. coefficient
  4. exponent
9. 
[math]3y + 8[/math] is an example of a (select all that apply)
  1. monomial
  2. binomial
  3. trinomial
  4. polynomial
10. 
What degree is the polynomial [math]3n^2+2n+1[/math]?
  1. 1
  2. 2
  3. 3
11. 
[math]x^2-12x+32[/math] is an example of a
  1. quadratic binomial.
  2. constant trinomial.
  3. linear monomial.
  4. quadratic trinomial.
  5. quartic polynomial.
12. 
Which of the following represents the simplified polynomial expression, given [math]3x^2y(3x^2y^2+7xy^3-4y^4)[/math] ?
  1. [math]9x^4y^6+21x^2y^3-12x^2y^4[/math]
  2. [math]6x^2y^2+10x^2y^3-7x^2y^4[/math]
  3. [math]9x^4y^3+21x^3y^4-12x^2y^5[/math]
  4. [math]6x^4y^3+10x^3y^4-7x^2y^5[/math]
13. 
Multiply: [math](x+2)(2x^2-3x+1)[/math]
  1. [math]-2x^3+3x^2+x[/math]
  2. [math]-2x^2+3x+1[/math]
  3. [math]2x^3-7x^2-7x-2[/math]
  4. [math]2x^3+x^2-5x+2[/math]
  5. [math]2x^3-7x^2+5x+2[/math]
14. 
Combine the polynomials.
[math](5x^3-2x^2+7x)+( -3x^3 + x^2 -5x)[/math]
  1. [math]2x^3+2x^2+2x[/math]
  2. [math]2x^3-x^2+2x[/math]
  3. [math]2x^3+3x^2+2x[/math]
  4. [math]2x^3+x^2+9x[/math]
15. 
Solve.

[math]-2/3t-3=-5[/math]



16. 
What is the solution of [math]-8x-5+3x=7+4x-9[/math]?
  1. [math]x=-3[/math]
  2. [math]x=-1/3[/math]
  3. [math]x=1/3[/math]
  4. [math]x=3[/math]
17. 
Solve the equation. Write identity or no solution, if applicable.

[math]2/3 x + 6= 3/6x -5[/math]



18. 
Determine whether the lines AB and CD are parallel, perpendicular, or neither for A(1,1), B(-1,-5), C(3,2), D(6,1).
  1. parallel
  2. perpendicular
  3. neither
19. 
Which point lies on the line defined by [math]3x + 6y = 2[/math]?
  1. (0, 2)
  2. (0, 6)
  3. (1, -1/6)
  4. (1, -1/3)
20. 
Find the slope from the pair of points. (5, -4) and (-1, -2)
  1. m = -3
  2. m = -1
  3. m = 3
  4. m = -1/3
21. 
Find the slope and y-intercept of this equation: [math]y=3x-1[/math]
  1. m=3 y-int=5
  2. m=7 y-int=1
  3. m=21 y-int=9
  4. m=3 y-int=-1
  5. m=4 y-int=8
22. 
Rewrite the equation [math]6x - 2y = 12[/math] in slope-intercept form.
  1. [math]y = 3x + 6[/math]
  2. [math]y = 6x +12[/math]
  3. [math]y = -6x +12[/math]
  4. [math]y = 3x - 6[/math]
23. 
Solving Systems of Equations by ELIMINATION Method.

[math]7x + 2y = 24[/math]
[math]8x + 2y = 30[/math]
  1. (6, −9)
  2. (8, −9)
  3. (-1, −5)
  4. (14, −3)
24. 
Solve the following system of equations using the substitution method.

[math]x+2y=11[/math]

[math]3x-2y=9[/math]






25. 
Solve for x:
[math]4x + 6 <= 3x - 5[/math]



26. 
Solve the inequality for x:

[math]8 <3x - 7 <=23[/math]
  1. [math]5 < x <= 10[/math]
  2. [math]5<=x<=10[/math]
  3. [math]5 < x < 10[/math]
  4. [math]5<=xlt10[/math]
27. 
Graph [math]y < -x + 5[/math]
Graph Numbered through 10



28. 
When graphing y > 2x + 3, what type of boundary line do we graph and which half plane do we shade?
  1. dotted / below
  2. dotted / above
  3. solid / below
  4. solid / above
29. 
Select the solution of [math]|3x + 1| < 5[/math].
  1. [math]x > 2 or x < 4/3[/math]
  2. [math]-2 < x < 4/3[/math]
  3. [math]x > 4/3 or x < 2[/math]
  4. [math]- 4/3 or x < 2[/math]
  5. [math]- 4/3 < x < 2[/math]
30. 
Solve the absolute value equation.
[math]| 5x + 12 | = - 53[/math]
  1. [math]x= 8.2, -13[/math]
  2. [math]x= -8.2, 13[/math]
  3. [math]x= 41/5, 13[/math]
  4. [math]"No solution"[/math]
31. 
Solve. [math]abs(8-4x)=40[/math]
  1. x = 8; x = 12
  2. x = 8; x = -12
  3. x = -8; x = -12
  4. x = -8; x = 12
32. 
Which of these equations is not a function?
  1. [math]y=x^2[/math]
  2. [math]x=3[/math]
  3. [math]y=4x+3[/math]
  4. [math]f(y)=4y^2 -2[/math]
33. 
The output of a function
  1. Independent Variable
  2. Function
  3. Dependent Variable
34. 
Identify the domain and range:
{(0, -3), (2, 5), (-4, 2)}



35. 
Given [math]f(x)=2x+3[/math], find [math]f(2)[/math].
  1. 2
  2. 1
  3. 5
  4. 7
36. 
Find [math]f(x-4)[/math] given that [math]f(x)=2x-8[/math].
  1. [math]f(x-4)=0[/math]
  2. [math]f(x-4)=2x-16[/math]
  3. [math]f(x-4)=2x[/math]
  4. [math]f(x-4)=1/4[/math]
37. 
Any base (except 0) raised to a power of "0" is equal to                .
  1. -1
  2. 0
  3. 1
  4. undefined
38. 
[math]a^-n = 1/a^n[/math]
  1. True
  2. False
39. 
Simplify.

[math](343x^6)^(1/3)[/math]
  1. [math]21x^6[/math]
  2. [math]7x^2[/math]
  3. [math]14x^2[/math]
  4. [math]7x^3[/math]
40. 
Simplify:
[math](x^3z^7)/(x^5z^9y)[/math]
  1. xyz
  2. [math]1/(xyz)[/math]
  3. [math]1/(x^2z^2y)[/math]
  4. [math]1/(x^2z^2)[/math]
41. 
The quadratic function [math]f(x)=x^2[/math] has
  1. no zeros
  2. exactly one zero
  3. exactly two zeros
  4. more than two zeros
42. 
What is the equation of the axis of symmetry of [math]y=-3(x+6)^2+12[/math]?
  1. [math]x=2[/math]
  2. [math]x=-6[/math]
  3. [math]x=6[/math]
  4. [math]x=-18[/math]
43. 
Find the discriminant of the quadratic equation and state what type of solutions it has: [math]x^2+2x+3=0[/math]
  1. -8, two real solutions
  2. 8, two imaginary solutions
  3. -8, two imaginary solutions
  4. 8, two real solutions
44. 
Find the zeros.
[math]y= 2x^2 +6x +3[/math]
  1. [math]x=(-6+-sqrt60)/4[/math]
  2. [math]x=(-6+-2sqrt3)/4[/math]
  3. [math]x=(6+-sqrt12)/4[/math]
45. 
Solve the equation. [math]2x^2 - 17x + 35 = 0[/math]



46. 
Factor:

[math]x^2 + 3x - 4[/math]



47. 
Factor: [math]a^2x+3ax+2x-a^2y-3ay-2y[/math]
  1. [math](y-x)(a+3)[/math]
  2. [math](x-y)(a-5)(2)[/math]
  3. [math](x-y)(a+2)(a+1)[/math]
  4. [math](y-x)(2-a)(1-a)[/math]
48. 
True or False: [math]4x^2+20x-3xy-15y[/math] factors into [math](4x+3y)(x-5)[/math].
  1. True
  2. False
49. 
Simplify the radical expression: [math]root3 112 * root3 16[/math].
  1. [math]8root3 12[/math]
  2. [math]4root3 28[/math]
  3. [math]4root3 20[/math]
  4. [math]8root3 28[/math]
50. 
Which expression is equivalent to [math](sqrt(3x^2))^4[/math]?
  1. [math]3x^4[/math]
  2. [math]9x^4[/math]
  3. [math]9x^8[/math]
  4. [math]12x^8[/math]

Become a Help Teaching Pro subscriber to access premium printables

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options

You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page