Applying Similar and Congruent Triangles (Grade 10)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Applying Similar and Congruent Triangles
1.
In [math]Delta ABC[/math], [math]AC = 5 \ "units"[/math] and [math]AB = 12 \ "units"[/math]. Find [math]AD[/math]. Round the answer to one decimal place, if necessary.

- 0.8 units
- 2.1 units
- 10.9 units
- 12 units
2.
In [math]Delta ABC[/math], [math]AB = 15 \ "units"[/math] and [math]CB = 10 \ "units"[/math]. Find the value of [math]BD[/math]. Round the answer to one decimal place, if necessary.

- 15 units
- 11.2 units
- 6.7 units
- 1.3 units
3.
In [math]Delta ABC[/math], [math]AC = x+6 \ "units"[/math], [math]AD = x \ "units"[/math], and [math]DB = x + 28 \ "units"[/math]. What is the value of [math]x ?[/math]

- [math]x=2[/math]
- [math]x=-18[/math]
- [math]x=9/4[/math]
- [math]x = -13/2 + 1/2sqrt(193)[/math]
4.
In the circle pictured below with center [math]O[/math], [math]bar{AD}[/math] is tangent to the circle and [math]bar{AB}[/math] is a diameter. If [math]ang ADO ~= ang CAB[/math], [math]CB = 5 \ "units"[/math] ([math]bar{CB}[/math] is not drawn), and [math]OB = 4 \ "units"[/math], what is the length of [math]bar{OD} ?[/math]

- Not enough information.
- [math]32/5 \ "units"[/math]
- [math]8 \ "units"[/math]
- [math]10 \ "units"[/math]
5.
In the circle pictured below point [math]O[/math] is the center, [math]bar{AB}[/math] is a diameter, and [math]bar{AD}[/math] is tangent to the circle. If [math]ang CAB ~= ang ADO[/math], [math]CB = 2x \ "units"[/math] ([math]bar{CB}[/math] is not drawn), [math]AB = 2x+4 \ "units"[/math], and [math]OD = x + 16/3 \ "units"[/math], what is the value of [math]x ?[/math]

- [math]x = 16/3[/math]
- [math]x = 16/9[/math]
- [math]x=3[/math]
- [math]x = -10/3 +2/3sqrt(34)[/math]
6.
[math]Delta ABC[/math] and [math]Delta ACD[/math] are both right triangles, where [math]ang B[/math] and [math]ang D[/math] are right angles, and [math]ang BAC ~= ang CAD[/math]. If [math]AB = 24 \ "units"[/math] and [math]AC = 25 \ "units"[/math], what is the value of [math]CD ?[/math].

- Not enough information.
- 49 units
- 24 units
- 7 units
7.
In the figure below, [math]bar{AB} ~= bar{CE}[/math], [math]ang BAF ~= ang CED[/math], and [math]ang AFB[/math] and [math]ang EDC[/math] are right angles. If [math]AB = 13 \ "units"[/math], [math]BF=12 \ "units"[/math], [math]FD=20 \ "units"[/math], what is the value of [math]FE ?[/math]

- Not enough information.
- 8 units
- 15 units
- 25 units
8.
In the figure below, quadrilateral ABED is a parallelogram. If [math]ang 1 ~= ang 2~= ang BCF ~= ang CFD[/math], [math]CF = 6 \ "units"[/math] ([math]bar{CF}[/math] is not drawn), and [math]BF = 4 \ "units"[/math], what is the perimeter of parallelogram ABED?

- 20 units
- 28 units
- 32 units
- Not enough information.
9.
In the figure below, [math]Delta ABF ~= Delta ECD[/math] and [math]FBCD[/math] is a rectangle. If [math]AF = 8 \ "units"[/math], [math]AB = 17 \ "units"[/math], and [math]FE = 27 \ "units"[/math], what is the perimeter of rectangle [math]FBCD ?[/math] Round the answer to one decimal place if necessary.

- 100 units
- 107.6 units
- 85 units
- 84 units
10.
In the following figure, [math]ang A ~= ang C[/math] and [math]ang ADB ~= ang CBD[/math]. If [math]m ang A = x+15°[/math], [math]m ang ADB = x-40°[/math], and [math]m ang CDB = x+25°[/math], find the value of [math]x[/math]. Round the answer to one decimal place if necessary.

- [math]x = 60[/math]
- [math]x = 53.3[/math]
- [math]x = -4[/math]
- [math]x = 87.5[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page