Distributive Property with Algebra Tiles (Grade 6)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Distributive Property with Algebra Tiles
1.
Which equation represents the model?


[math]=[/math]










- [math](x + 1) = 2x[/math]
- [math]2(x + 1) = 2x + 2[/math]
- [math](x + 1)(x + 1) = 2 (x + 1)[/math]
- [math]2(x + 1)(x + 1) = 4x + 2[/math]
2.
Write an equation for the model.



[math]=[/math]
















- [math]3(x - 4) = 3x - 12[/math]
- [math]3(x + 4) = 3x + 12[/math]
- [math]3(x - 12) = 3x - 12[/math]
- [math]3(x + 12) = 3x + 12[/math]
3.
Write an equation for the model.








[math]=[/math]























- [math]6 + 3x = 3(2 - x)[/math]
- [math]6 - 3x = 3(2 + x)[/math]
- [math]6 + 3x = 3(2 + x)[/math]
- [math]6 - 3x = 3(2 - x)[/math]
4.
Write an equation for the model.










[math]=[/math]


















































- [math]4(2x + 3) = 8x + 12[/math]
- [math]4(2x - 3) = 8x - 12[/math]
- [math]8x + 12 = 4(2x + 3)[/math]
- [math]8x - 12 = 4(2x - 3)[/math]
5.
Write an equation for the model.








[math]=[/math]

























- [math]3(x + 1) = 9x[/math]
- [math]3(2x + 1) = 9x[/math]
- [math]3(x + 1) = 6x + 3[/math]
- [math]3(2x + 1) = 6x +3[/math]
6.
Which set of tiles shows the expression below rewritten without parentheses?
[math]4(x - 1)[/math]
[math]4(x - 1)[/math]
7.
Which set of tiles shows the expression below rewritten without parentheses?
[math]2(x + 4)[/math]
[math]2(x + 4)[/math]
8.
Which set of tiles shows the expression below rewritten without parentheses?
[math]3(x - 2)[/math]
[math]3(x - 2)[/math]
9.
Which set of tiles shows the expression below rewritten without parentheses?
[math]2(2 - a)[/math]
[math]2(2 - a)[/math]
10.
Which set of tiles shows the expression below rewritten without parentheses?
[math]3(2m + 3)[/math]
[math]3(2m + 3)[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page