Share/Like This Page


Tenth Grade (Grade 10) Math Questions

Create printable tests and worksheets from Grade 10 Math questions. Select questions to add to a test using the checkbox above each question. Remember to click the add selected questions to a test button before moving to another page.

Show Math questions in All Grades.
1 2 3 4 ... 36
Grade 10 :: Quadratic Equations by Math_Teach2
Declare which of the following is the solution to [math]10x^2 + x -2 = 0.[/math]
  1. [math]x = - 5, x = -2[/math]
  2. [math]x = - 1/2, x = 2/5[/math]
  3. [math]x = - 2/5, x = 1/2[/math]
  4. [math]x = 2, x = 5[/math]
Grade 10 :: Inequalities by Math_Teach2
Determine the inequality. [math]x - 1 < - 4 or x + 2 >= 4[/math]
  1. [math]x < - 3 or x >= 2[/math]
  2. [math]x < - 5 or x >= 6[/math]
  3. [math]x = 1 or x = 2[/math]
  4. [math]x = 3 or x = - 2[/math]
Grade 10 :: Inequalities by Math_Teach2
Determine the solution of [math]2x - 3 > 11[/math].
  1. [math]x>10[/math]
  2. [math]x>7[/math]
  3. [math]x>5[/math]
  4. [math]x<7[/math]
Grade 10 :: Inequalities by Math_Teach2
Create the solution of the following: [math]-5 <= -2x + 3 <= 7[/math]
  1. [math]x >= 4 or x <= -2[/math]
  2. [math]-2 <= x <= 4[/math]
  3. [math]-4 <= x <= -2[/math]
  4. [math]-4 <= x <= 2[/math]
Grade 10 :: Inequalities by Math_Teach2
Select the solution of [math]|3x + 1| < 5[/math].
  1. [math]x > 2 or x < 4/3[/math]
  2. [math]-2 < x < 4/3[/math]
  3. [math]x > 4/3 or x < 2[/math]
  4. [math]- 4/3 or x < 2[/math]
  5. [math]- 4/3 < x < 2[/math]
Grade 10 :: Quadratic Equations by Math_Teach2
The solutions of [math]x^2 + 6x +10 = 0[/math] are the following:
  1. x = -4, x = -22
  2. x = 2, x = 4
  3. [math]- 3 +- i[/math]
  4. [math]3 +- i[/math]
Grade 10 :: Functions by Math_Teach2
Which absolute value function has a graph that contains (-2, -1), (0,0), and (2, -1)?
  1. y = 2 times the absolute value of x.
  2. y = 1/2 times the absolute value of x.
  3. y = -1/2 times the absolute value of x.
  4. y = -2 times the absolute value of x.
Grade 10 :: Inequalities by Math_Teach2
The graph of the inequality, [math]y < 2x[/math], is as follows:
  1. solid line, shaded above
  2. solid line, shaded below
  3. dashed line, shaded above
  4. dashed line, shaded below
Grade 10 :: Inequalities by Math_Teach2
What is the solution of [math]|2x - 1| >= 9.[/math]
  1. [math]x >= 5 or x <= - 4[/math]
  2. [math]- 5 <= x <= 4[/math]
  3. [math]x >= 4 or x <= - 5[/math]
  4. [math]- 4 <= x <= 5[/math]
Grade 10 :: Inequalities by Math_Teach2
The solutions of [math]|2x - 3| - 8 = -5[/math].
  1. x = 0, x = - 2
  2. x = 0, x = 2
  3. x = - 2, x = 2
  4. x = 0, x = 3
Grade 10 :: Quadratic Equations by Math_Teach2
Determine the vertex form of [math]y = x^2 + 8x + 10[/math].
  1. [math]y = (x + 4)^2 + 10[/math]
  2. [math]y = (x + 4)^2 - 6[/math]
  3. [math]y = (x + 4)^2 + 26[/math]
  4. [math]y = (x - 4)^2 - 6[/math]
Grade 10 :: Quadratic Equations by Math_Teach2
Do the math. Simplify problem to discover product of [math](2 - i)(4 + 5i)[/math]in standard form.
  1. [math]13 - 6i[/math]
  2. [math]8 + i[/math]
  3. [math]3 + 6i[/math]
  4. [math]13 + 6i[/math]
Grade 10 :: Quadratic Equations by Math_Teach2
Determine the correct factorization of [math]12x^2 + 8x -15.[/math]
  1. (6x + 5)(2x - 3)
  2. (6x - 5)(2x + 3)
  3. (4x + 3)(3x - 5)
  4. (4x - 3)(3x + 5)
Grade 10 :: Quadratic Equations by Math_Teach2
Write [math](3 + 2i) - (4 - 3i)[/math] in standard form.
  1. [math]- 1 +5i[/math]
  2. [math]-1 - i[/math]
  3. [math]7 - i[/math]
  4. [math]7 + 5i[/math]
Grade 10 :: Quadratic Equations by Math_Teach2
The correct factorization of [math]x^2 - 6x -27[/math] is one of the following:
  1. (x + 3)(x - 9)
  2. (x - 3)(x +9)
  3. (x - 3)(x - 9)
  4. (x + 3)(x + 9)
Grade 10 :: Quadratic Equations by Math_Teach2
Determine the solutions of [math]x^2 - 14x +49 = 48.[/math]
  1. [math]- 7 +- 4sqrt3[/math]
  2. [math]- 7 +- 16sqrt3[/math]
  3. [math]7 +- 4sqrt3[/math]
  4. [math]7 +- 16sqrt3[/math]
1 2 3 4 ... 36
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.