Want to see correct answers?
Login or join for free!
  Algebra Worksheets
Looking for Algebra worksheets?
Check out our pre-made Algebra worksheets!
Share/Like This Page
Filter By Grade

You are browsing Grade 11 questions. View questions in All Grades.

Grade 10 Grade 11 Grade 12 College

Eleventh Grade (Grade 11) Matrices Questions

You can create printable tests and worksheets from these Grade 11 Matrices questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Grade 11 Matrices
Evaluate. [math][(2,-3), (-4,2)] - [(-1,-5), (-3,2)][/math]
  1. [math][(3,2),(-7,4)][/math]
  2. [math][(-3,2),(-7,4)][/math]
  3. [math][(3,2),(-1,0)][/math]
  4. None of the above
Grade 11 Matrices
Evaluate. [math][(2, -3) , (-4, 2)][/math] + [math][ (-1, -5), ( 3, -2) ][/math]
  1. [math][(-1, -8), (-1, 0)][/math]
  2. [math][(1, -8), (-1,0)][/math]
  3. [math][(1, -8), (-7, 0)][/math]
  4. None of the above
Grade 11 Matrices
A square matrix A is NOT invertible (does not have an inverse) if which of the following is true?
  1. Matrix A is the identity matrix
  2. [math]A_{1,1} < 0[/math]
  3. Matrix A has any elements equal to zero
  4. [math]det(A) = 0[/math]
Grade 11 Matrices
Evaluate. [math][[1,2],[3,4]]+[[1,2],[3,4]][/math]
  1. [math][[2,4],[6,8]][/math]
  2. [math][[2,8],[6,4]][/math]
  3. [math][[8,2],[6,4]][/math]
Grade 11 Matrices
What is the rule for matrix addition and subtraction?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix.
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix addition and subtraction is always possible.
Grade 11 Matrices
What is the rule for matrix multiplication?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix.
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix multiplication is always possible.
Grade 11 Matrices
State the dimensions of matrix [math]F[/math] if [math]F=[[0,1,0],[2,-4,2],[4,-8,4],[8,-16,8]][/math] .
  1. [math]16xx8[/math]
  2. [math]2xx2xx3[/math]
  3. [math]4xx3[/math]
  4. [math]3xx4[/math]
Grade 11 Matrices
Find the product, if possible. [math][[2,0],[-3,5],[1,4]]*[[3],[-2]][/math]
  1. [math][[6,-19,-5]][/math]
  2. [math][[6],[-19],[-5]][/math]
  3. [math][[5,-5],[0,3]][/math]
  4. Impossible
Grade 11 Matrices
Evaluate, if possible. [math][[-5,7],[6,8]] - [[4,0,-2],[9,0,1]][/math]
  1. [math][[-9,7],[-3,8]][/math]
  2. [math][[13,-7],[3,-8]][/math]
  3. [math][[-9,7,4],[-3,8,-13]][/math]
  4. Impossible
Grade 11 Matrices
Evaluate the determinant using diagonals.

[math][[-5,-6,7],[4,0,5],[-3,8,2]][/math]
  1. [math]562[/math]
  2. [math]-80[/math]
  3. [math]26[/math]
  4. [math]-561[/math]
Grade 11 Matrices
Find the inverse of the matrix, if it exists.

[math][[-4,-2],[7,8]][/math]
  1. [math]"Does Not Exist"[/math]
  2. [math][[4/9,1/9],[-7/18,-2/9]][/math]
  3. [math][[2/9,1/9],[-7/18,-4/19]][/math]
  4. [math][[-4/9,-1/9],[7/18,2/9]][/math]
Grade 11 Matrices
Find the solution of the following matrix equation [math][[1,5],[1,6]][[x],[y]]=[[-4],[-5]][/math].
  1. [math](1,-1)[/math]
  2. [math](1,1)[/math]
  3. [math](0,1)[/math]
  4. [math](-1,-1)[/math]
Grade 11 Matrices
Which of the following can you not do when solving a system of equations using matrices?
  1. Add two rows
  2. Switch two rows
  3. Add a constant to a row
  4. Multiply a row by a constant
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.