Want to see correct answers?
Login or join for free!
  Algebra Worksheets
Looking for Algebra worksheets?
Check out our pre-made Algebra worksheets!
Share/Like This Page
Filter By Grade

Matrices Questions - All Grades

You can create printable tests and worksheets from these Matrices questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 4 Next
Grade 11 Matrices
What is the rule for matrix multiplication?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix multiplication is always possible.
Grade 11 Matrices
What is the rule for matrix addition and subtraction?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix addition and subtraction is always possible.
Grade 12 Matrices CCSS: HSN-VM.C.6
Jack is keeping track of the scores for his favorite teams in a series of basketball games. He records the initials of the team and score for each game. Which matrix represents the data he collected?
Round 1
SC 67
RG 103
PD 89

Round 2
RG 109
SC 86
PD 111

Round 3
PD 42
SC 99
RG 121
  1. [math][[67,103,89],[109,86,111],[42,99,121]][/math]
  2. [math][[67,86,99],[103,109,121],[89,111,42]][/math]
  3. [math][[42,99,121],[111,86,109],[67,103,89]][/math]
  4. [math][[67,109,42],[103,86,99],[89,111,122]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.6
Which matrix represents the system of equations [math]2x=8[/math] and [math]6=3y+x[/math]?
  1. [math][[2,8,0],[6,3,1]][/math]
  2. [math][[8,2,0],[6,3,1]][/math]
  3. [math][[0,2,8],[6,3,1]][/math]
  4. [math][[2,0,8],[1,3,6]][/math]
Grade 11 Matrices
Evaluate, if possible. [math][[-5,7],[6,8]] - [[4,0,-2],[9,0,1]][/math]
  1. [math][[-9,7],[-3,8]][/math]
  2. [math][[13,-7],[3,-8]][/math]
  3. [math][[-9,7,4],[-3,8,-13]][/math]
  4. Impossible
Grade 11 Matrices
Find the product, if possible. [math][[2,0],[-3,5],[1,4]]*[[3],[-2]][/math]
  1. [math][[6,-19,-5]][/math]
  2. [math][[6],[-19],[-5]][/math]
  3. [math][[5,-5],[0,3]][/math]
  4. Impossible
Grade 12 Matrices
Perform the indicated operations. If the matrix does not exist, write impossible.

[math][[8,3],[-1,-1]]-[[0,-7],[6,2]][/math]
  1. [math][[-8,-10],[-7,-3]][/math]
  2. [math][[-3,10],[-7,8]][/math]
  3. [math]"Impossible"[/math]
  4. [math][[8,10],[-7,-3]][/math]
Grade 11 Matrices
Find the inverse of the matrix, if it exists.

[math][[-4,-2],[7,8]][/math]
  1. [math]"Does Not Exist"[/math]
  2. [math][[4/9,1/9],[-7/18,-2/9]][/math]
  3. [math][[2/9,1/9],[-7/18,-4/19]][/math]
  4. [math][[-4/9,-1/9],[7/18,2/9]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.11
The matrix [math][[1,2,3],[4,5,6],[7,8,9]][/math] multiplied by the vector [math]< 1,2,3 >[/math] equals:
  1. [math][[1,4,9],[4,10,18],[7,16,27]][/math]
  2. [math][ [14],[32],[50]][/math]
  3. [math][[12],[30],[54]][/math]
  4. [math][[1,2,3],[8,10,12],[21,24,27]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.7
If the matrix [math][[2,9,8],[0,3,4],[1,11,3]][/math] is multiplied by the scalar [math]5[/math], what is the result?
  1. [math][[7,14,13],[5,8,9],[6,16,8]][/math]
  2. [math][[10,45,40],[0,15,20],[5,55,15]][/math]
  3. [math][[3,4,1],[11,3,2],[9,8,0]][/math]
  4. [math][[10,0,5],[45,15,55],[40,20,15]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.11
Which matrix would transform the vector [math]< 4,2,7 >[/math] to the vector [math]<20,23,51 >[/math] ?
  1. [math][[0,3,2],[4,0,1],[3,2,5]][/math]
  2. [math][[3,2,5],[4,0,1],[0,3,2]][/math]
  3. [math][[0,4,3],[3,0,2],[2,1,5]][/math]
  4. [math][[5,1,2],[2,0,3],[3,4,0]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
[math][[5,2],[2,1]]-[[2,1],[4,-3]] = [/math]
  1. [math][[3,1],[2,4]][/math]
  2. [math][[7,3],[6,-2]][/math]
  3. [math][[12,6],[2,1]][/math]
  4. [math][[3,1],[-2,4]][/math]
Grade 11 Matrices
Evaluate the determinant using diagonals.

[math][[-5,-6,7],[4,0,5],[-3,8,2]][/math]
  1. [math]562[/math]
  2. [math]-80[/math]
  3. [math]26[/math]
  4. [math]-561[/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
[math][[0,2],[5,1]]+[[4,2],[2,7]] = [/math]
  1. [math][[4,4],[7,8]][/math]
  2. [math][[4,0],[3,6]][/math]
  3. [math][[2,9],[9,3]][/math]
  4. [math][[0,12],[45,9]][/math]
Previous Page 1 of 4 Next
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.