Looking for Math worksheets?
Check out our pre-made Math worksheets!
 Tweet
Browse Questions

You can create printable tests and worksheets from these Calculus questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Next
College Integrals
Find the following indefinite integral.
$int(8x^8 -6) dx$
1. $8/9x^9+C$
2. $64x^7+C$
3. $8/9x^9-6x+C$
4. $8/9x^9-6+C$
Differentiate. $f(x) = 3x^5 - 2x^2 - 7x^(-3) + 9x^(-4)$
1. $f(x) = 15x^4 - 4x - 21x^(-2) + 36x^(-3)$
2. $f(x) = 15x^4 - 4x + 21x^(-4) - 36x^(-5)$
3. $f(x) = 15x^4 - 4x + 21x^(2) - 36x^(5)$
4. $f(x) = 15x^4 - 4x - 21x^(-4) + 36x^(-5)$
College Integrals
Find the following indefinite integral.
$int(-3/x+2x^(-1/4) - 8e^x) dx$
1. $-ln(|x|) -8/3x^(3/4)-8e^x +C$
2. $-1/3ln(|x|) + 8/3x^(3/4) - 8e^x+C$
3. $-3 ln(|x|) + 8/3x^(3/4)-8e^x +C$
4. $-3 ln(|x|) + 8/3x^(3/4) - 8/xe^x+C$
What is the derivative of $f(x) = 3x^2 - x + 8 ?$
1. $f'(x)=6x-1$
2. $f'(x)=6x+8$
3. $f'(x) = 3x$
4. $f'(x)=9x+7$
What is the derivative of $f(x)=23pi ?$
1. $f'(x) = 23pi$
2. $f'(x) = pi$
3. $f'(x) = 0$
4. $f'(x) = 23$
What is the derivative of $f(x) = 2sqrt(x^7) - 5root[4](x^3) + 9root[3](x^2) - 6/root[6](x^5)?$
1. $f'(x) = x^3 - 5/2 sqrt(x) + 9/2root[6](x) + 3/root[3](x^4)$
2. $f'(x) = 7sqrt(x^5) - 20/(3root[4](x)) + 3/(2root[3](x)) - 5/root[6](x^11)$
3. $f'(x) = 7sqrt(x^5) - 15/(4root[4](x)) + 6/root[3](x) + 5/root[6](x^11)$
4. $f'(x) = 14x^3 - 15sqrt(x)+ 18root[3](x) + 30/root[3](x^2)$
Find the value of the integral $int_0^1e^x/(e^x+1)dx$.
1. $ln((e+1)/2)$
2. $(e-1)/2$
3. $ln(e-1)$
4. $e+1$
Find the value of the integral $int_1^e1/xdx$.
1. $-1$
2. $e$
3. $1/2$
4. $1$
What is the derivative of $f(x)=3x^4 ?$
1. $f'(x)=3x^3$
2. $f'(x)=12x$
3. $f'(x)=12x^3$
4. $f'(x)=4x$
Find the derivative. $f(x) = 4sqrt(x)+3$
1. $f'(x) = 4/sqrt(x)$
2. $f'(x) = 4/sqrt(x) + 1/3$
3. $f'(x) = 2$
4. $f'(x) = 2/sqrt(x)$
Evaluate the limit. $lim_{x->5} (x^2 - 2x - 15)/(x^2 - 25)$
1. $0$
2. $4/5$
3. $1$
4. $1/2$
Find the value of the integral $int_1^2(x^2+1)/xdx$.
1. $1/2ln2$
2. $1+ln2$
3. $3/2+ln2$
4. $3/2-ln2$
Find the derivative. $f(x)=99x$
1. $f'(x) = 99$
2. $f'(x) = x$
3. $f'(x) = 99x$
4. $f'(x) = 100$
Find the value of the integral $int_(-e^2)^(-e)3/xdx$.
1. $-3$
2. $-e$
3. $e^3$
4. $1/3$
Differentiate. $f(x)=2x^6$
1. $f'(x) = 6$
2. $f'(x) = 6x^5$
3. $f'(x) = 12x^5$
4. $f'(x) = 12$
On what intervals is the function $f(x)=3x^3+2x^2$ concave upwards and downwards?
1. concave upward $(-2/9, oo)$, concave downward $(-oo, -2/9)$
2. concave upward $(-oo, -2/9)$, concave downward $(-2/9, oo)$
3. concave upward $(0, oo)$, concave downward $(-oo, 0)$
4. concave upward $(-oo, 0)$, concave downward $(0, oo)$
Calculate the derivative. $f(x)=8x^2-5x+3$
1. $f'(x) = 8x$
2. $f'(x) = 16x-5x$
3. $f'(x) = 2x-5$
4. $f'(x) = 16x-5$
Find the derivative. $f(x) = 4x^3 - 3sqrt(x^3) + sqrt(x)$
1. $f'(x) = 12x^2 - 9/2 sqrt(x) + 1/(2sqrt(x))$
2. $f'(x) = 12x^2 + 2/(sqrt(x))$
3. $f'(x) = 4x^2 - 9sqrt(x) + 1$
4. $f'(x) = 64x^2 + 9sqrt(x) - 1/sqrt(x)$
What is the derivative of $f(x)=sin(3x^2) ?$
1. $f'(x)=3x^2cos(3x^2)$
2. $f'(x)=6xcos(3x^2)$
3. $f'(x)=3x^2sin(3x^2)$
4. $f'(x)=6xsin(3x^2)$