Want to see correct answers?
Login or join for free!
  Math Worksheets
Looking for Math worksheets?
Check out our pre-made Math worksheets!
Share/Like This Page
Filter By Grade

You are browsing Grade 10 questions. View questions in All Grades.

Grade 10 Grade 11 Grade 12 College


Tenth Grade (Grade 10) Trigonometry Questions

You can create printable tests and worksheets from these Grade 10 Trigonometry questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 3 Next
Grade 10 Trigonometry
Where are the vertical asymptotes located for [math]y = 2tan(x-pi/2) - 1, \ x in [-pi,pi]?[/math]
  1. No asymptotes in this region
  2. [math]x=0[/math]
  3. [math]x=-pi/2,pi/2[/math]
  4. [math]x=-pi,0,pi[/math]
Grade 10 Trigonometry
What is the reference angle for [math](7pi)/6 ?[/math]
  1. [math](2pi)/3[/math]
  2. [math]pi/3[/math]
  3. [math]pi/6[/math]
  4. [math](5pi)/6[/math]
Grade 10 Trigonometry
What are the locations the vertical asymptotes of [math]y = 1/2 cot(2x) + 1, \ x in [-pi,pi] ?[/math]
  1. [math] x = 0 [/math]
  2. [math] x = -2, -1, 0, 1, 2[/math]
  3. [math] x =-pi, 0, pi [/math]
  4. [math] x = -pi, -pi/2, 0, pi/2, pi[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math]f(x)=2cos(x)[/math] negative?
  1. [math]-3/4pi < x < -1/4pi, 1/4pi < x < 3/4pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is slope of the function [math]f(x)=sinx[/math] positive?
  1. [math]0 < x < pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math]f(x)=sinx[/math] negative?
  1. [math]0 < x < pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 10 Trigonometry CCSS: HSF-TF.A.2
If [math]theta[/math] is the angle formed between a line from the origin to the point [math](-1,-4)[/math] and the [math]x[/math]-axis, find [math]tan theta[/math].
  1. [math]tan theta = -4/sqrt(17)[/math]
  2. [math]tan theta =- 1/sqrt(17)[/math]
  3. [math]tan theta = 4[/math]
  4. [math]tan theta = -1/4[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math] f(x)=cos(2x)[/math] negative?
  1. [math]-3/4pi < x < -1/4pi, 1/4pi < x < 3/4pi[/math]
  2. [math]-pi < x < 0,0 < x < pi[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-1/2pi < x <0,1/2pi< x< pi[/math]
Grade 10 Trigonometry CCSS: HSF-TF.A.2
If [math]theta[/math] is the angle formed between a line from the origin to the point [math](-3,5)[/math] and the [math]x[/math] axis, find [math]sin theta[/math].
  1. [math]sin theta = 5/sqrt(34)[/math]
  2. [math]sin theta =- 3/sqrt(34)[/math]
  3. [math]sin theta = -2/5[/math]
  4. [math]sin theta = sqrt(34)/5[/math]
Grade 10 Trigonometry CCSS: HSF-TF.A.2
If [math]theta[/math] is the angle formed between a line from the origin to the point [math](4,3)[/math] and the [math]x[/math] axis, find [math]cos theta[/math].
  1. [math]cos theta = 4/3[/math]
  2. [math]cos theta = 3/5[/math]
  3. [math]cos theta = 4/5[/math]
  4. [math]cos theta = 3/4[/math]
Grade 10 Trigonometry CCSS: HSF-TF.A.2
If [math]theta[/math] is the angle formed between a line from the origin to the point [math](4,3)[/math] and the [math]x[/math] axis, find [math]tan theta[/math].
  1. [math]tan theta = 4/3[/math]
  2. [math]tan theta = 3/5[/math]
  3. [math]tan theta = 4/5[/math]
  4. [math]tan theta = 3/4[/math]
Grade 10 Trigonometry CCSS: HSF-TF.A.2
If [math]theta[/math] is the angle formed between a line from the origin to the point [math](-1,-4)[/math] and the [math]x[/math] axis, find [math]cos theta[/math].
  1. [math]cos theta = -4/sqrt(17)[/math]
  2. [math]cos theta =- 1/sqrt(17)[/math]
  3. [math]cos theta = 4[/math]
  4. [math]cos theta = -1/4[/math]
Previous Page 1 of 3 Next
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.