Composite Functions (Grades 11-12)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Composite Functions
1.
Find [math](f@g)(x)[/math] if [math]f(x) = 7x + 1[/math] and [math]g(x) = -2x +34[/math].
- [math]-14x +35[/math]
- [math]-14x +239[/math]
- [math]5x +35[/math]
- [math]5x + 239[/math]
2.
[math]f(x)= 2x+6 and g(x) = 4x+2[/math]. Find [math](g @ f)(x)[/math].
- [math]8x+26[/math]
- [math]8x+10[/math]
- [math]6x+8[/math]
- [math]6x+12[/math]
3.
[math]f(x) =7x+9 and g(x) = 4x-1[/math]. Find [math](f @ g)(x)[/math].
- [math]28x+8[/math]
- [math]28x+16[/math]
- [math]28x+2[/math]
- [math]28x+35[/math]
4.
[math]f(x) = 3x-12 and g(x) = 4x[/math]. Find [math](f @ g)(x)[/math].
- [math]12x^2+48x[/math]
- [math]12x-48[/math]
- [math]12x-12[/math]
- [math]7x-12[/math]
5.
If [math]f(x)=x^2[/math] and [math]g(x)=3x-1[/math], find [math](g@f)(x)[/math].
- [math]x^2 +3x-1[/math]
- [math]9x^2 -6x+1[/math]
- [math]9x^2 -1[/math]
- [math]3x^2 -1[/math]
6.
Let [math]f(x) = 5x-1 and g(x) = 3x^2 + 2x - 1[/math]. Find [math](g@f)(x)[/math].
- [math]75x^2 - 20x[/math]
- [math]15x^2+10x-6[/math]
- [math]75x^2-28x+2[/math]
- [math]25x-3[/math]
7.
[math]f(x) = sqrt(x+8) and g(x)= 8x-12[/math]. Find [math](f @ g)(x)[/math].
- [math]2sqrt(2x-1)[/math]
- [math]8sqrt(x+8)-12[/math]
- [math]8sqrt(x-4)[/math]
- [math]2sqrt(2x+1)[/math]
8.
Let [math]f(x) = 5x-2 and g(x)= (3x)/ (2+x) [/math]. Find [math](g@f)(x)[/math].
- [math](15x)/(x+2) - 2[/math]
- [math](15x)/(2+5x)[/math]
- [math] (3x(5x-2))/(x+2)[/math]
- [math](15x-6)/(5x)[/math]
9.
[math]f(x)=6/(x-4) and g(x)= 5/(4x)[/math]. Find [math](f @ g)(x)[/math].
- [math](24x)/(5-16x)[/math]
- [math](24x)/(5+16x)[/math]
- [math](6x)/(5-16x)[/math]
- [math](5x-20)/(24x)[/math]
10.
Let [math]f(x) = 3x^2-5x and g(x)=sqrt(x+2)[/math]. Find [math](g@f)(x)[/math].
- [math]3(x+2) - 5sqrt(x+2)[/math]
- [math]sqrt(3x^2-5x+2[/math]
- [math]-2x + 6[/math]
- [math]sqrt(3)x - (sqrt(5) -1) sqrt(x)[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page