##### Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.

See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Print Test (Only the test content will print)

## Congruent Triangles

1.
SAS can prove that two triangles are congruent.
1. True
2. False
2.
AAA can prove that two triangles are congruent.
1. True
2. False
3.
SSA can prove that two triangles are congruent.
1. True
2. False
4.
SSS can prove that two triangles are congruent.
1. True
2. False
5.
Which of the following two triangles may not be congruent?
1. Both having three same lengths
2. Two angles and a corresponding side are equal
3. Two angles and the included side of both triangles are equal
4. If two sides and the angle attached to one length are equal
6.
In the triangle ABC $bar (AB)=16$, $bar (BC)=30$, and $bar (CA)=9$. In triangle DEF $bar (DF)=9$, $bar (DE)=30$ , and $bar (EF)=16$. Which postulate proves that the triangle $ABC ~= FED$?
1. SSA
2. ASA
3. SSS
4. They are not congruent.
7.
In the triangle ABC $ang A=45 deg$, $ang B = 30 deg$, and $bar (BC)=5$. In triangle DEF $bar (DF)=5$, $ang D=45 deg$ , and $ang F=105 deg$. Which postulate proves that the triangle $ABC ~= DEF$?
1. SSA
2. ASA
3. SSS
4. They are not congruent.
8.
There are 2 triangles. In the first triangle $ang A=30 deg$, $ang B = 116 deg$, and $bar (AB) = 6$. In the second triangle $ang E = 116 deg$, $ang F=34 deg$ , and $bar (DE)=6$. Which postulate proves that the triangle $ABC ~= DEF$?
1. SSA
2. ASA
3. SSS
4. They are not congruent.
9.
In parallelogram ABED, $ang1$ $~=$ $ang2$. Which is the reason that triangle ABC and triangle EDF are congruent?
1. AAS
2. SSA
3. SAS
4. ASA
10.
In the triangle ABC $ang B=22 deg$, $bar (AC)=14$, and $bar (BC) = 3$. In triangle DEF $bar (DF)=3$, $ang F=22 deg$ , and $bar (DE)=14$. Which postulate proves that the triangle $ABC ~= EFD$?
1. SSA
2. ASA
3. SSS
4. They are not necessarily congruent.
You need to be a HelpTeaching.com member to access free printables.