Understanding Polynomial Long Division (Grades 11-12)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Understanding Polynomial Long Division
1.
What type of divisor must be used to divide polynomials using synthetic division?
- Trinomial Divisor
- Binomial Divisor
- Linear Divisor
- Polynomial Divisor
2.
What is the dividend of the polynomial division [math](27x^3+9x^2-3x-10)/(3x-2)[/math]?
- [math]27x^3+9x^2-3x-10[/math]
- [math]3x-2[/math]
- [math](27x^3+9x^2-3x-10)/(3x-2)[/math]
- None of the above
3.
What is the divisor in the polynomial division problem [math](x^7+x^5-10x^3+12)/(x+2)[/math]?
- [math]-10x^3+12[/math]
- [math]x^7+x^5[/math]
- [math]x^7+x^5-10x^3+12[/math]
- [math]x+2[/math]
4.
What is the quotient of [math](x^3 - 3x^2 + 4x - 6) and (x - 2)?[/math]
- [math]x^2 - x + 2[/math]
- [math]x^2 - x + 3[/math]
- [math]x^2 - x + 2 + (2)/(x - 2)[/math]
- [math]x^2 - x + 2 - (2)/(x - 2)[/math]
5.
Write the dividend of the polynomial division problem [math](x^2-5x-5x^3+x^4)-: (5+x)[/math] in standard form.
- [math]-5x^3+x^4+x^2-5x[/math]
- [math]x^4-5x^3+x^2-5x[/math]
- [math]x^2+x^4-10x^3[/math]
- [math]-5x+x^4-5x^3+x^2[/math]
6.
What is the remainder of [math]5x^2+2x-8[/math] divided by [math]x-3[/math]?
- [math]-8[/math]
- [math]x-53[/math]
- [math]43[/math]
- [math]51[/math]
7.
Use long division or synthetic division to divide the polynomials: [math](4x^2-9) -:(2x+3).[/math]
- [math]2x+3[/math]
- [math]2x-3[/math]
- [math]-2x+3[/math]
- [math]-2x-3[/math]
8.
True or False: [math](3x^3-2x^2+3x-4)-:(x-3)=3x^2+7x+14+68/(x-3)[/math]
- True
- False
9.
Solve using synthetic division:
[math](x^2 + 8x -13)[/math] divided by [math](x - 3)[/math]
[math](x^2 + 8x -13)[/math] divided by [math](x - 3)[/math]
10.
Solve by using long division.
[math](x^3 + 19x^2 + 32)[/math] divided by [math](x + 4)[/math]
[math](x^3 + 19x^2 + 32)[/math] divided by [math](x + 4)[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page