Share/Like This Page
Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.




See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Properties of Trig Functions (sec, csc, cot) (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Properties of Trig Functions (sec, csc, cot)

1. 
What is the period of the secant function?
  1. [math]pi[/math].
  2. [math]2pi[/math].
  3. [math]1/2pi[/math].
  4. [math]4pi[/math].
2. 
The secant function is
  1. even.
  2. odd.
  3. either.
  4. neither.
3. 
What is the period of the cosecant function?
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
4. 
The cosecant function is
  1. even.
  2. odd.
  3. either.
  4. neither.
5. 
What is the period of the cotangent function?
  1. [math]pi[/math]
  2. [math]2pi[/math]
  3. [math]1/2pi[/math]
  4. [math]4pi[/math]
6. 
The cotangent function is
  1. even.
  2. odd.
  3. either.
  4. neither.
7. 
The period for the function [math]y=-4+2cot(3 x-pi)[/math] is equal to which of the following?
  1. [math]pi[/math]
  2. [math]3pi[/math]
  3. [math](9pi)/2[/math]
  4. [math]pi/3[/math]
  5. none of these are correct
8. 
On the graph [math]y=sec (x-pi/4), x in [-pi,pi][/math], the vertical asymptotes are located at [math]x=[/math]
  1. [math]pi and 2pi[/math]
  2. [math]-pi/2 and pi/2[/math]
  3. [math]-pi/4 and (3pi)/4[/math]
  4. [math]-(3pi)/2 and -pi/4[/math]
  5. none of these are correct
9. 
What is the period of [math]y = 5csc(pi/2 x - (3pi)/2) + 1?[/math]
  1. [math]pi/2[/math]
  2. [math]4[/math]
  3. [math]3[/math]
  4. [math]1/2[/math]
10. 
What are the locations the vertical asymptotes of [math]y = 1/2 cot(2x) + 1, \ x in [-pi,pi] ?[/math]
  1. [math] x = 0 [/math]
  2. [math] x = -2, -1, 0, 1, 2[/math]
  3. [math] x =-pi, 0, pi [/math]
  4. [math] x = -pi, -pi/2, 0, pi/2, pi[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page