Algebra I Review, #2 (Grade 9)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Algebra I Review, #2
1.
A letter is that used to represent a number value in an expression or an equation is also known as a(n) .
- absolute value
- quantity
- equation
- variable
- none of the above
2.
4y and 5x are like terms.
- True
- False
3.
Which of the expressions below is equivalent to [math]4x^2-12x+9[/math] ?
- [math](2x+3)(2x-3)[/math]
- [math]"No" \ "Answer"[/math]
- [math](2x+3)^2[/math]
- [math]2x(2x-3)-3(2x-3)[/math]
4.
Simplify.
5 + 6(m + 1)
5 + 6(m + 1)
- 6m + 11
- 6m + 6
- 11m + 11
- 11m + 1
5.
Evaluate 6c + 5d - 4c - 3d + 3c - 6d when c = 4 and d = -2.
6.
What is the value of [math](q^2+rt)-:(qr-2t)[/math] if q = -4, r = 3, and t = 8?
- -17/6
- -10/7
- -2/7
- -1/6
7.
In the equation [math]3x+4=12[/math], [math]3x[/math] is a/an
- term.
- coefficient.
- sum.
- operator.
8.
What do you call the number in front of the variable? For example, the -9 in -9y.
- term
- like term
- coefficient
- exponent
9.
[math]3y + 8[/math] is an example of which of the following? Select all that apply.
- monomial
- binomial
- trinomial
- polynomial
10.
What degree is the polynomial [math]3n^2+2n+1[/math]?
- 1
- 2
- 3
11.
[math]x^2-12x+32[/math] is an example of a
- quadratic binomial.
- constant trinomial.
- linear monomial.
- quadratic trinomial.
- quartic polynomial.
12.
Which of the following represents the simplified polynomial expression, given [math]3x^2y(3x^2y^2+7xy^3-4y^4)[/math] ?
- [math]9x^4y^6+21x^2y^3-12x^2y^4[/math]
- [math]6x^2y^2+10x^2y^3-7x^2y^4[/math]
- [math]9x^4y^3+21x^3y^4-12x^2y^5[/math]
- [math]6x^4y^3+10x^3y^4-7x^2y^5[/math]
13.
Multiply: [math](x+2)(2x^2-3x+1)[/math]
- [math]-2x^3+3x^2+x[/math]
- [math]-2x^2+3x+1[/math]
- [math]2x^3-7x^2-7x-2[/math]
- [math]2x^3+x^2-5x+2[/math]
- [math]2x^3-7x^2+5x+2[/math]
14.
Combine the polynomials.
[math](5x^3-2x^2+7x)+( -3x^3 + x^2 -5x)[/math]
[math](5x^3-2x^2+7x)+( -3x^3 + x^2 -5x)[/math]
- [math]2x^3+2x^2+2x[/math]
- [math]2x^3-x^2+2x[/math]
- [math]2x^3+3x^2+2x[/math]
- [math]2x^3+x^2+9x[/math]
15.
Solve.
[math]-2/3t-3=-5[/math]
[math]-2/3t-3=-5[/math]
16.
What is the solution of [math]-8x-5+3x=7+4x-9[/math]?
- [math]x=-3[/math]
- [math]x=-1/3[/math]
- [math]x=1/3[/math]
- [math]x=3[/math]
17.
Solve the equation. Write identity or no solution, if applicable.
[math]2/3 x + 6= 3/6x -5[/math]
[math]2/3 x + 6= 3/6x -5[/math]
18.
Determine whether the lines AB and CD are parallel, perpendicular, or neither for A(1,1), B(-1,-5), C(3,2), D(6,1).
- parallel
- perpendicular
- neither
19.
Which point lies on the line defined by [math]3x + 6y = 2[/math]?
- (0, 2)
- (0, 6)
- (1, -1/6)
- (1, -1/3)
20.
Find the slope from the pair of points. (5, -4) and (-1, -2)
- m = -3
- m = -1
- m = 3
- m = -1/3
21.
Find the slope and y-intercept of this equation.
[math]y=3x-1[/math]
[math]y=3x-1[/math]
- m=3 y-int=5
- m=7 y-int=1
- m=21 y-int=9
- m=3 y-int=-1
- m=4 y-int=8
22.
Rewrite the equation [math]6x - 2y = 12[/math] in slope-intercept form.
- [math]y = 3x + 6[/math]
- [math]y = 6x +12[/math]
- [math]y = -6x +12[/math]
- [math]y = 3x - 6[/math]
23.
Solve the system of equations by the ELIMINATION Method.
[math]7x + 2y = 24[/math]
[math]8x + 2y = 30[/math]
[math]7x + 2y = 24[/math]
[math]8x + 2y = 30[/math]
- (6, −9)
- (8, −9)
- (-1, −5)
- (14, −3)
24.
Solve the following system of equations using the substitution method.
[math]x+2y=11[/math]
[math]3x-2y=9[/math]
[math]x+2y=11[/math]
[math]3x-2y=9[/math]
25.
Solve for x:
[math]4x + 6 <= 3x - 5[/math]
[math]4x + 6 <= 3x - 5[/math]
26.
Solve the inequality for x.
[math]8 <3x - 7 <=23[/math]
[math]8 <3x - 7 <=23[/math]
- [math]5 < x <= 10[/math]
- [math]5<=x<=10[/math]
- [math]5 < x < 10[/math]
- [math]5<=xlt10[/math]
27.
Graph. [math]y < -x + 5[/math]

28.
When graphing y > 2x + 3, what type of boundary line do we graph and which half plane do we shade?
- dotted / below
- dotted / above
- solid / below
- solid / above
29.
Select the solution of [math]|3x + 1| < 5[/math].
- [math]x > 2 or x < 4/3[/math]
- [math]-2 < x < 4/3[/math]
- [math]x > 4/3 or x < 2[/math]
- [math]- 4/3 or x < 2[/math]
- [math]- 4/3 < x < 2[/math]
30.
Solve the absolute value equation.
[math]| 5x + 12 | = - 53[/math]
[math]| 5x + 12 | = - 53[/math]
- [math]x= 8.2, -13[/math]
- [math]x= -8.2, 13[/math]
- [math]x= 41/5, 13[/math]
- [math]"No solution"[/math]
31.
Solve. [math]abs(8-4x)=40[/math]
- x = 8; x = 12
- x = 8; x = -12
- x = -8; x = -12
- x = -8; x = 12
32.
Which of these equations is not a function?
- [math]y=x^2[/math]
- [math]x=3[/math]
- [math]y=4x+3[/math]
- [math]f(y)=4y^2 -2[/math]
33.
The output of a function.
- Independent Variable
- Function
- Dependent Variable
34.
Identify the domain and range:
{(0, -3), (2, 5), (-4, 2)}
{(0, -3), (2, 5), (-4, 2)}
35.
Given [math]f(x)=2x+3[/math], find [math]f(2)[/math].
- 2
- 1
- 5
- 7
36.
Find [math]f(x-4)[/math] given that [math]f(x)=2x-8[/math].
- [math]f(x-4)=0[/math]
- [math]f(x-4)=2x-16[/math]
- [math]f(x-4)=2x[/math]
- [math]f(x-4)=1/4[/math]
37.
Any base (except 0) raised to a power of "0" is equal to .
- -1
- 0
- 1
- undefined
38.
[math]a^-n = 1/a^n[/math]
- True
- False
39.
Simplify. Assume [math]x[/math] is positive.
[math](343x^6)^(1/3)[/math]
[math](343x^6)^(1/3)[/math]
- [math]21x^6[/math]
- [math]7x^2[/math]
- [math]14x^2[/math]
- [math]7x^3[/math]
40.
Simplify:
[math](x^3z^7)/(x^5z^9y)[/math]
[math](x^3z^7)/(x^5z^9y)[/math]
- xyz
- [math]1/(xyz)[/math]
- [math]1/(x^2z^2y)[/math]
- [math]1/(x^2z^2)[/math]
41.
The quadratic function [math]f(x)=x^2[/math] has
- no zeros.
- exactly one zero.
- exactly two zeros.
- more than two zeros.
42.
What is the equation of the axis of symmetry of [math]y=-3(x+6)^2+12[/math]?
- [math]x=2[/math]
- [math]x=-6[/math]
- [math]x=6[/math]
- [math]x=-18[/math]
43.
Find the discriminant of the quadratic equation and state what type of solutions it has: [math]x^2+2x+3=0[/math]
- -8, two real solutions
- 8, two imaginary solutions
- -8, two imaginary solutions
- 8, two real solutions
44.
Find the zeros.
[math]y= 2x^2 +6x +3[/math]
[math]y= 2x^2 +6x +3[/math]
- [math]x=(-6+-sqrt60)/4[/math]
- [math]x=(-6+-2sqrt3)/4[/math]
- [math]x=(6+-sqrt12)/4[/math]
45.
Solve the equation. [math]2x^2 - 17x + 35 = 0[/math]
46.
Factor:
[math]x^2 + 3x - 4[/math]
[math]x^2 + 3x - 4[/math]
47.
Factor: [math]a^2x+3ax+2x-a^2y-3ay-2y[/math]
- [math](y-x)(a+3)[/math]
- [math](x-y)(a-5)(2)[/math]
- [math](x-y)(a+2)(a+1)[/math]
- [math](y-x)(2-a)(1-a)[/math]
48.
True or False: [math]4x^2+20x-3xy-15y[/math] factors into [math](4x+3y)(x-5)[/math].
- True
- False
49.
Simplify the radical expression. [math]root3 112 * root3 16[/math]
- [math]8root3 12[/math]
- [math]4root3 28[/math]
- [math]4root3 20[/math]
- [math]8root3 28[/math]
50.
Which expression is equivalent to [math](sqrt(3x^2))^4[/math]?
- [math]3x^4[/math]
- [math]9x^4[/math]
- [math]9x^8[/math]
- [math]12x^8[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page