##### Print Instructions

NOTE: Only your test content will print.
To preview this test, click on the File menu and select Print Preview.

See our guide on How To Change Browser Print Settings to customize headers and footers before printing.

Print Test (Only the test content will print)

## Power Rule

1.
Find the derivative. $f(x) = 3x^4$
1. $f'(x) = 3x^3$
2. $f'(x) = 12x$
3. $f'(x) = 12x^3$
4. $f'(x) = 4x^3$
2.
Differentiate. $f(x) = (4x^100)/25$
1. $f'(x) = (4x^99)/25$
2. $f'(x) = (8x^10) / 5$
3. $f'(x) = x^99 / 625$
4. $f'(x) = 16x^99$
3.
Differentiate. $f(x) = x^(-3/2)$
1. $f'(x) = x^(-5/2)$
2. $f'(x) = -3/2 x^(-5/2)$
3. $f'(x) = -3/2 x^(-1/2)$
4. $f'(x) = -2/3 x^(-2)$
4.
Find the derivative for this function: $f(x) = x^2 +5x+3$.
1. $f'(x) = 2x+5$
2. $f'(x) = 2x+3$
3. $f'(x) = 2x+5x$
5.
What is the derivative of $f(x)=3x^3+2x^2$?
1. $f'(x)=9x^2+4x$
2. $f'(x)=3x^2+2x$
3. $f'(x)=0$
4. $f'(x)=12x^2+6x$
6.
Differentiate. $f(x) = 3x^-2 + 5x^-3 - 2x^-5$
1. $f'(x) = -6x^-1 - 15x^-2 + 10x^-4$
2. $f'(x) = 3x^-3 + 5x^-4 - 2x^-6$
3. $f'(x) = 3x^-1 + 5x^-2 - 2x^-4$
4. $f'(x) = -6x^-3 - 15x^-4 + 10x^-6$
7.
Find the derivative. $f(x) = 2x^0.4 - 8x^(-0.02)$
1. $f'(x) = 2x^(-0.4) - 8x^(-1.02)$
2. $f'(x) = 0.8x^(-0.6) + 0.16x^(-1.02)$
3. $f'(x) = 2 + 0.16x^(-1.02)$
4. $f'(x) = 0.5x^(-0.6) + 0.4 x^(-1.02)$
8.
Find the derivative. $f(x) = root[5](x^7)$
1. $f'(x) = root[5](7x^6)$
2. $f'(x) = 7/5 root[5](x^2)$
3. $f'(x) = root[4](x^6)$
4. $f'(x) = root[5](x^2)$
9.
Find the derivative of the following function. $f(x) = 3x^5 - 10x^2 + 5x + 7 + 13/x - 3/x^3$
1. $f'(x) = 15x^4 - 20x + 5 + 7/x - 9/x^4$
2. $f'(x) = 15x^4 - 20x + 18 - 9/x^2$
3. $f'(x) = 15x^4 - 20x + 5 - 13/x^2 + 9/x^4$
4. $f'(x) = 3x^3 - 23 - 3/x^2$
10.
Differentiate. $f(x) = 3x^4 + 9sqrt(x) - 7/root[3](x^4)$
1. $f'(x) = 12x^3 + 9sqrt(x) + 7/(4root[3](x^3))$
2. $f'(x) = 12x^3 + 9/2 sqrt(x) +21/(4root[3](x))$
3. $f'(x) = 12x^3 + 9/(2sqrt(x)) + 28/(3root[3](x^7))$
4. $f'(x) = 12x^3 +9 - 7/root[3](4x^3)$
You need to be a HelpTeaching.com member to access free printables.