Rewriting Expressions Using i (Grades 11-12)

Print Test (Only the test content will print)
Name: Date:

Rewriting Expressions Using i

1. 
Simplify the complex number radical expression [math]sqrt(-1000)[/math].
  1. [math]10isqrt10[/math]
  2. [math]-10isqrt10[/math]
  3. [math]10sqrt10[/math]
  4. [math]-10sqrt10[/math]
2. 
Simplify the complex number radical expression [math]sqrt {:-1600[/math].
  1. [math]-40[/math]
  2. [math]40[/math]
  3. [math]-40i[/math]
  4. [math]40i[/math]
3. 
Simplify the complex number radical expression [math]sqrt(-160)[/math].
  1. [math]-4isqrt10[/math]
  2. [math]-4sqrt10[/math]
  3. [math]4isqrt10[/math]
  4. [math]4sqrt10[/math]
4. 
What is [math]sqrt(-81) ?[/math]
  1. [math]81+i[/math]
  2. [math]81i[/math]
  3. [math]9i[/math]
  4. [math]-9i[/math]
5. 
What is [math]sqrt(-4) ?[/math]
  1. [math]2i[/math]
  2. [math]4i[/math]
  3. [math]4+i[/math]
  4. [math]16i[/math]
6. 
Simplify completely. [math]sqrt(-200)[/math]
  1. [math]10sqrt2[/math]
  2. [math]-10isqrt2[/math]
  3. [math]-10sqrt2[/math]
  4. [math]10isqrt2[/math]
7. 
Simplify completely. [math]sqrt(-169)[/math]
  1. [math]-isqrt13[/math]
  2. [math]-13i[/math]
  3. [math]13i[/math]
  4. [math]+-13[/math]
8. 
Which of the following is the correct simplified form of the expression [math]sqrt(-9) + sqrt(4) ?[/math]
  1. [math]-7i[/math]
  2. [math]2 + 3i[/math]
  3. [math]-3i + 2[/math]
  4. [math]2 - 3i[/math]
9. 
What is [math]sqrt 25 + sqrt(-25) ?[/math]
  1. [math]5i-5[/math]
  2. [math]25+5i[/math]
  3. [math]25i[/math]
  4. [math]5+5i[/math]
10. 
Which of the following is the correct simplified form of the expression [math]-sqrt(-4) - sqrt(9) ?[/math]
  1. [math]-5i[/math]
  2. [math]-3-2i[/math]
  3. [math]3-2i[/math]
  4. [math]2i-3[/math]

Become a Help Teaching Pro subscriber to access premium printables

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options

You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access.    |    Go Back To Previous Page