Graphing Exponential and Logarithmic Functions (Grades 11-12)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Graphing Exponential and Logarithmic Functions
1.
The graph of an exponential function of the form [math]f(x) = a*b^(c \ x) + d[/math], where [math]a,b,c,d[/math] are real numbers, always has a horizontal asymptote.
- True
- False
2.
The graph of a logarithmic function of the form [math]f(x) = a*log_n(bx + c) + d[/math], where [math]a,b,c,d in RR[/math] and [math]{n in RR | n>0 " and " n!=1}[/math], always has a vertical asymptote.
- True
- False
3.
When graphing the function [math]f(x) = a \ 10^(bx \ + \ c) + d[/math], where [math]a,b,c,d[/math] are integer values, there is a possibility that there is no y-intercept.
- True
- False
4.
Graph the function.
[math]y=(3/5)^x[/math]
[math]y=(3/5)^x[/math]

5.
Graph the equation.
[math]y = 2e^-x-2[/math]
[math]y = 2e^-x-2[/math]

6.
Graph the function [math]f(x) = 3 e^(2x -3) - 1[/math].

7.
Graph the function [math]f(x) = 3e^(-x^2)[/math].

8.
Graph the function [math]f(x) = log_{10}(x-1)+4[/math]. Label the graph fully.

9.
Graph the function [math]f(x) = log_{1/2}(x)[/math].

10.
Graph the function [math]g(x) = log_e(-x+1) +3[/math].

You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page