Equivalent Algebraic Expressions (Grade 6)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Equivalent Algebraic Expressions
Instructions: Circle the answer choice with the equivalent expression.
1.
Identify an equivalent expression.
[math]5m[/math]
[math]5m[/math]
- [math]m + m + m [/math]
- [math]m + m + m + m[/math]
- [math]m + m + m + m + m[/math]
- [math]m + m + m + m + m + m[/math]
2.
Identify an equivalent expression.
[math]2w + w[/math]
[math]2w + w[/math]
- [math]w + w[/math]
- [math]w + 2w[/math]
- [math]2w + 2w[/math]
- [math]w + w + 2[/math]
3.
Identify an equivalent expression.
[math]2(3y)[/math]
[math]2(3y)[/math]
- [math]5y[/math]
- [math]6y[/math]
- [math]5 + y[/math]
- [math]6 + y[/math]
4.
Identify an equivalent expression.
[math]2p + 6q[/math]
[math]2p + 6q[/math]
- [math]2(p + 3q)[/math]
- [math]2(p + 6q)[/math]
- [math]3(p + 3q)[/math]
- [math]3(p + 6q)[/math]
5.
Identify an equivalent expression.
[math]3(x + y)[/math]
[math]3(x + y)[/math]
- [math]x + y[/math]
- [math]3x + y[/math]
- [math]x + 3y[/math]
- [math]3x + 3y[/math]
6.
Identify an equivalent expression.
[math]b + b + 0[/math]
[math]b + b + 0[/math]
- [math]0[/math]
- [math]b[/math]
- [math]2b[/math]
- [math]3b[/math]
7.
Identify an equivalent expression.
[math](8s xx 1)[/math]
[math](8s xx 1)[/math]
- [math]8s[/math]
- [math]9s[/math]
- [math]8s + 1[/math]
- [math]8s + 8[/math]
8.
Identify an equivalent expression.
[math]2h + 3g[/math]
[math]2h + 3g[/math]
- [math]h + g[/math]
- [math]h + h + g + g + g[/math]
- [math]2 (h + g)[/math]
- [math]3 (h + g)[/math]
9.
Identify an equivalent expression.
[math]abc[/math]
[math]abc[/math]
- [math]a + b + c[/math]
- [math]c + a + b[/math]
- [math]c xx b xx a[/math]
- [math]3(abc)[/math]
10.
Identify an equivalent expression.
[math]4 + (x + y)[/math]
[math]4 + (x + y)[/math]
- [math]4(xy)[/math]
- [math]4x + 4y[/math]
- [math]y + (4 + x)[/math]
- [math]4 + 4x + 4y[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page