Function Notation (Grades 11-12)
Print Test
(Only the test content will print)
Name: | Date: |
---|
Function Notation
1.
[math]f(x)=2x+5[/math] is equivalent to which of the following functions?
- [math]y=2x+5[/math]
- [math]x=2x+5[/math]
- This is not a function.
- [math]8=2x+5[/math]
2.
Which of the following shows [math]y=3x-2[/math] expressed with function notation?
- [math]x=3x-2[/math]
- [math]y=3x-2[/math]
- [math]f(x)=3x-2[/math]
- This is not a function.
3.
The function [math]f(x)=3x+4y^2-6[/math] can also be expressed in which of the following forms?
- [math]y(x) = 3x+4y^2-6[/math]
- [math]y=3x+4y^2-6[/math]
- [math]x=3x+4y^2-6[/math]
- This is not a function.
4.
The function [math]f(x)=15y^2+8[/math] can also be expressed in which of the following forms?
- This is not a function.
- [math]x=15y^2+8[/math]
- [math]15y^2=8[/math]
- [math]f(y)=15x^2+8[/math]
5.
Which of the following shows [math]t=23r-4r+6[/math] expressed with function notation?
- [math]f(t)=23r-4r+6[/math]
- [math]f(r)=19r+6[/math]
- [math]f(t)=19r+6[/math]
- This is not a function.
6.
[math]f(p)=6p-3[/math] is equivalent to which of the following?
- [math]f(x)=6p-3[/math]
- [math]p=6p-3[/math]
- [math]t=6p-3[/math]
- This is not a function.
7.
Which of the following shows [math]y=1/2x^2+2[/math] expressed with function notation?
- [math]f(x)=1/2x^2+2[/math]
- [math]f(y)=1/2x^2+2[/math]
- [math]x=1/2x^2+2[/math]
- This is not a function.
8.
Which of the following shows [math]8=x^2+y^2[/math] expressed as y as a function of x?
- [math]f(x)=x^2+y^2[/math]
- This is not a function.
- [math]f(y)=x^2+y^2[/math]
- [math]f(x,y)=x^2+y^2[/math]
9.
Which of the following shows [math]y=-x[/math] expressed with function notation?
- [math]f(x)=-x[/math]
- [math]f(y)=-x[/math]
- This is not a function.
- [math]f(-x)=x[/math]
10.
[math]f(y)=-x^2+2[/math] is equivalent to which of the following?
- [math]y=-x^2+2[/math]
- This is not a function.
- [math]x=-x^2+2[/math]
- [math]y=x^2+2[/math]
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page