The Nature of Matter (College)
Print Test
(Only the test content will print)
Name: | Date: |
---|
The Nature of Matter
1.
Which of the following represents Planck's constant, h?
- [math]6.626 xx 10^-34 J•s[/math]
- [math]6.626 xx 10^-32 J•s[/math]
- [math]6.626 xx 10^-31 J•s[/math]
- [math]6.626 xx 10^-30 J•s[/math]
2.
Which of the following equations represents the energy lost or gained?
- [math]∆E=∆mc^2[/math]
- [math]∆E=∆(mc)^2[/math]
- [math]∆E=nhv[/math]
- [math]∆E={nh}/v[/math]
3.
How is energy transferred?
- in packets of energy called protons
- in the form of subatomic particles
- in the form of photons and subatomic particles
- in the form of photons
4.
Which of the following equations represents the energy of a photon, in terms of wavelength?
- [math]∆E=nhv[/math]
- [math]E={hc}/lambda[/math]
- [math]E=mc^2[/math]
- [math]E=hc[/math]
5.
Which of the following equations can be used to solve for wavelength in diffraction patterns?
- [math]lambda={hm}/v[/math]
- [math]lambda=v/{mh}[/math]
- [math]lambda={h}/m xx v[/math]
- [math]lambda=h/{mv}[/math]
6.
All matter has both and properties.
7.
Which of the following equations represents energy that can be used in problems involving specific energy transitions?
- E=[math](-2.178 xx 10^-18 J)(Z^2/n^2)[/math]
- ∆E=[math]h/{mv}[/math]
- [math]∆E=nhv[/math]
- ∆E=hf
8.
Calculate ∆E when the following transition occurs in a hydrogen atom: [math]n=4 rarr n=2[/math].
- [math]-1.36 xx 10^-19 J[/math]
- [math]-4.084 xx 10^-19 J[/math]
- [math]-5.45 xx 10^-19 J[/math]
- [math]4.084 xx 10^-19 J[/math]
9.
Calculate ∆E when the following transition occurs in a hydrogen atom: [math]n=2 rarr n=6[/math].
- [math]-5.45 xx 10^-19 J[/math]
- [math]-6.05 xx 10^-20 J[/math]
- [math]4.84 xx 10^-19 J[/math]
- [math]-4.84 xx 10^-19 J[/math]
10.
Calculate ∆E when the following energy change occurs: n=1 to n=5.
You need to be a HelpTeaching.com member to access free printables.
Already a member? Log in for access. | Go Back To Previous Page
Already a member? Log in for access. | Go Back To Previous Page