Share/Like This Page

Common Core Standard HSF-BF.A.1b Questions

Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to a decaying exponential, and relate these functions to the model.

You can create printable tests and worksheets from these questions on Common Core standard HSF-BF.A.1b! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 2 of 6 Next
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
Find (f-g)(x) if f(x)=7x2-9x+1 and g(x)=-3x2+5x-9.
  1. 4x2-14x+10
  2. 10x2-4x+10
  3. 4x2-4x-8
  4. 10x2-14x+10
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
If f(x)=2x+3 and g(x)=x4x-1, what is (f-g)(x) and its domain?
  1. 2x+34x-1;  x14
  2. 8x2+9x-34x-1;  x14
  3. x+34x-1;  x14
  4. x-2x+4;  x2
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
For f(x)=3x−6 and g(x)=x−2, find f/g(x) and its domain.
  1. 3; all real numbers except x=2
  2. 1; all real numbers
  3. 3; all real numbers
  4. -3; all real numbers except x=3
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
Given f(x)=x2+2x and g(x)=x+3, find f/g(x) and its domain.
  1. x2+2xx+3 ; all real numbers except x=−3
  2. x2x+3 ; all real numbers except x=0
  3. x2+2x+3x+3 ; all real numbers except x=−3
  4. 3x+2x+3 ; all real numbers
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
For f(x)=6x+9 and g(x)=x+3, find f/g(x) and its domain.
  1. 6; all real numbers except x=−3x = -3x=−3
  2. 2; all real numbers except x=−2x = -2x=−2
  3. 6xx+3;all real numbers
  4. 6x+9x+3; all real numbers except x=−3
Grade 11 Function and Algebra Concepts CCSS: HSF-BF.A.1b
Let f(x)=5x−7 and g(x)=3x+2. What is (f⋅g)(x)?
  1. 15x211x14
  2. 8x25x5
  3. 15x2+11x14
  4. 15x229x14
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
Find (fg)(x) if f(x)=2x-5 and g(x)=x+3.
  1. 2x2-15
  2. 2x2+x-15
  3. 2x2+11x-15
  4. 2x2-x+15
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
If f(x)=x-2 and g(x)=2x2+4x-70x+7, find (f+g)(x) in its simplest form and its domain.
  1. 2x2+5x-72x+7;  x-7
  2. 3x-12;  
  3. 3x-12;  x-7
  4. 3x2+9x+56x+7;  x-7
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
Given f(x) = 5x - 2 and g(x)=x²+3x, what is (f * g)(x)?
  1. 5x³ + 11x² - 6x
  2. 5x³ + 15x² - 2x
  3. 5x² + 3x - 2
  4. x² + 15x - 2
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
If f(x)=x−2 and g(x)=x24xx+2, find (f+g)(x) and its domain.
  1. 2x2-4x-4x+2; x≠−2
  2. 2x−4; x≠−2
  3. x2+4xx+2;x2
  4. 2x+4; x≠2
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
Find (f+g)(x) for f(x)=x−3 and g(x)=x29x+3, and its domain.
  1. x+3; x≠−3
  2. x2+6x9;R
  3. 2x - 6; x≠−3
  4. x−6; x≠3
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
Let f(x)=3x+2andg(x)=7x+6. Find (fg)(x).
  1. 6x2+4x+42
  2. 6x2+4x+56
  3. 21x2+32x+12
  4. 21x2+32x+24
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
Find the function (fg)(x) and its domain if f(x)=-x and g(x)=x+5.
  1. -xx+5;  -5<x0
  2. -xx+5;  x-5
  3. -xx+5;  -5<x0
  4. -xx+5;  x<-5orx0
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
Given f(x)=x32x+1 and g(x)=x3+3x5, find (f+g)(x).
  1. 2x3+x4
  2. -2x3+x4
  3. x+4
  4. 3x3+2x+6
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
Given f(x)=3x22x+7 and g(x)=x2+5x4find f(x)+g(x).
  1. 2x2+3x+2
  2. 2x2+3x+3
  3. 2x2+3x-1
  4. 2x2+3x+6
Grade 11 Functions and Relations CCSS: HSF-BF.A.1b
If f(x) = x² - 2x and g(x) = 3x + 7, what is (f + g)(x)?
  1. x² + x + 7
  2. x² + x + 5
  3. x² + 5x + 7
  4. x² -5 x - 7
Grade 11 Function and Algebra Concepts CCSS: HSF-BF.A.1b
Let f(x)=2x−3 and g(x)=x+4. Find (fg)(x).
  1. 2x3x+4
  2. x+42x-3
  3. 2x+1x+4
  4. 3x1x-4
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1b
For f(x)=log(x+7) and g(x)=log(-x+10), find (f-g)(x) and its domain.
  1. log(17);  
  2. log(x+7-x+10);  -7<x<10
  3. log(x+7-x+10);  x10
  4. log(2x-3);  x>23
Previous Page 2 of 6 Next

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options