Want to see correct answers?
Login or join for free!
  Algebra Worksheets
Looking for Algebra worksheets?
Check out our pre-made Algebra worksheets!
Share/Like This Page
Filter By Grade

You are browsing Grade 12 questions. View questions in All Grades.

Grade 10 Grade 11 Grade 12 College

Twelfth Grade (Grade 12) Matrices Questions

You can create printable tests and worksheets from these Grade 12 Matrices questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 7 Next
Grade 12 Matrices CCSS: HSN-VM.C.7
Find the resulting matrix if the matrix [math][[4,-2],[8,6]][/math] is multiplied by [math]3/2[/math].
  1. [math] [[6,-3],[12,9]] [/math]
  2. [math] [[12,-6],[24,18]][/math]
  3. [math] [[6,-2],[12,6]] [/math]
  4. [math] [[6,-3],[8,6]] [/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
Evaluate. [math][[3,-9,5],[0,-1,4]] - [[4,-3,-11],[-3,0,7]] [/math]
  1. [math] [[-1,-12,-6],[-4,-1,-3]] [/math]
  2. [math] [[-1,6,-16],[3,1,-3]] [/math]
  3. [math] [[-1,-6,16],[3,-1,-3]][/math]
  4. Cannot subtract because they are not square matrices.
Grade 12 Matrices CCSS: HSN-VM.C.8
Add the following matrices. [math] [[4,-3],[-1,6]] + [[3,5],[2,-8]][/math]
  1. [math] [[7,8],[3,14]][/math]
  2. [math] [[7,2],[1,-2]] [/math]
  3. [math] [[9,0],[-9,8]] [/math]
  4. [math] [[7,-2],[-3,-2]] [/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
Multiply the matrices, if possible. [math] [[3,4],[-2,5],[0,2]] * [[4,-1],[5,3]] [/math]
  1. [math] [[8,-13,-2],[27,5,6]][/math]
  2. [math] [[12,-4],[-10,15],[0,2]] [/math]
  3. [math] [[32,9],[17,17],[10,6]][/math]
  4. Not possible.
Grade 12 Matrices CCSS: HSN-VM.C.8
Subtract the matrices. [math][[3,-9,2]] - [[5],[8],[-3]][/math]
  1. [math] [[-2,-17,5]][/math]
  2. [math][[-2],[-17],[5]][/math]
  3. [math][[0,-5,0],[3,-17,2],[0,3,0]][/math]
  4. Cannot subtract matrices of different dimensions.
Grade 12 Matrices CCSS: HSN-VM.C.8
Evaluate. [math] [[5,4],[-3,8],[-2,1]] + [[1,0],[-5,5],[9,-2]] [/math]
  1. [math] [[6,4],[2,3],[7,-1]][/math]
  2. [math] [[5,5],[ 2,3],[-4,10]][/math]
  3. [math] [[6,4],[-8,13],[7,-1]][/math]
  4. Not possible to add (they are not square matrices).
Grade 12 Matrices CCSS: HSN-VM.C.6
Which augmented matrix represents the system of equations [math]2x=8[/math] and [math]6=3y+x[/math]?
  1. [math][[2,8,,0],[6,3,,1]][/math]
  2. [math][[8,2,,0],[6,3,,1]][/math]
  3. [math][[0,2,,8],[6,3,,1]][/math]
  4. [math][[2,0,,8],[1,3,,6]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
Evaluate. [math] [[4,8,-1,-1,3]] * [[2],[0],[-1],[3],[4]] [/math]
  1. [math] [18] [/math]
  2. [math] [[8],[0],[1],[-3],[12]] [/math]
  3. [math] [[8,0,1,-3,12]][/math]
  4. These matrices cannot be multiplied together.
Grade 12 Matrices CCSS: HSN-VM.C.10
Grade 12 Matrices CCSS: HSN-VM.C.7
If the matrix [math][[2,9,8],[0,3,4],[1,11,3]][/math] is multiplied by the scalar 5, what is the result?
  1. [math][[7,14,13],[5,8,9],[6,16,8]][/math]
  2. [math][[10,45,40],[0,15,20],[5,55,15]][/math]
  3. [math][[3,4,1],[11,3,2],[9,8,0]][/math]
  4. [math][[10,0,5],[45,15,55],[40,20,15]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.10
If A is a given square matrix, and it is known that there exists a matrix B such that [math]AB=1[/math], which of the following would be the most efficient ways to find the matrix B?
  1. Find the inverse of A. This is the matrix B.
  2. Find the transpose of A. This is the matrix B.
  3. Create a matrix B whose elements are variables. Then, perform matrix multiplication with the matrix A, setting each resulting entry equal to one. Solve this system of equations, which will give the elements of matrix B.
  4. Multiply both sides of the equation, on the left, by slight variations of the matrix A. When one of these matrices, multiplied by A, becomes the identity matrix, this is the matrix B.
Grade 12 Matrices CCSS: HSN-VM.C.7
If the matrix [math][[27,9,12],[3,0,6],[18,21,3]][/math] is multiplied by the scalar [math]1/3[/math], what is the result?
  1. [math][[9,3,4],[1,0,2],[6,7,1]][/math]
  2. [math][[30,12,14],[6,3,9],[21,24,6]][/math]
  3. [math][[27,9,12],[3,0,6],[18,21,3]][/math]
  4. [math][[9,1,6],[3,0,7],[4,2,1]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.10
James needs to show that for matrix [math]A = [[5,-2,1],[3,3,2],[-6,3,-1]] [/math], there is no matrix [math]B, B!=I[/math], such that [math]AB = I[/math], where [math]I[/math] is the 3-by-3 identity matrix. How can he do this?
  1. Try at least 3 matrices, and if none of them multiplied by [math]A[/math] equal the identity matrix, then it is not possible.
  2. Find the inverse of [math]A[/math], and then show that since this matrix is unique, there cannot exist another matrix [math]B[/math] such that [math]AB = I[/math].
  3. Subtract by the additive inverse on both sides, and then factor the left hand side of the equation. This implies that if [math]B=I[/math] the equation equals the zero matrix, which it can't.
  4. Show that the determinant of [math]A[/math] is zero, which means that it does not have a multiplicative inverse.
Grade 12 Matrices CCSS: HSN-VM.C.8
If Matrix A = [math][(-3,1),(-2,4),(5,-1)][/math] and Matrix B = [math][(4,-3),(0,-2),(-2,4)][/math], then what is 3A - 2B?
  1. [math][(-1,-3),(-6,8),(11,5)][/math]
  2. [math][(-1,9),(-6,8),(11,5)][/math]
  3. [math][(-1,9),(-6,8),(11,-11)][/math]
  4. [math][(-17,9),(-6,16),(19,-11)][/math]
Grade 12 Matrices CCSS: HSN-VM.C.12
The vertex matrix for rectangle ABCD is [math]V = [[1,1,4,4],[1,3,3,1]] [/math]. Which of the following is the correct transformed vertex matrix, if the transformation matrix [math]A = [[0,1],[-1,0]] [/math] is applied?
  1. [math] [[1,-1],[3,-1],[3,-4],[1,-4]] [/math]
  2. [math] [[-1,-3,-3,-1],[1,1,4,4]] [/math]
  3. [math] [[1,3,3,1],[-1,-1,-4,-4]] [/math]
  4. [math] [[-1,-3,-3,-1],[-1,-1,-4,-4]] [/math]
Grade 12 Matrices CCSS: HSN-VM.C.11
For the transformation matrix [math]A = [[1,0],[0,-1]][/math], how is the vector [math]vec{v} = <<3, 4>>[/math] affected if it is multiplied with [math]A ?[/math]
  1. It has been rotated 90° clockwise.
  2. It has reversed direction.
  3. It has been reflected over a horizontal line.
  4. The resulting transformation is a combination of reflections and rotations.
Grade 12 Matrices CCSS: HSN-VM.C.8
Find the difference. [math] [[2,0],[-4,1],[8,12],[0,-3],[1,1]] - [[-3,5],[6,10],[3,12],[-4,4],[8,7]] [/math]
  1. [math] [[5,5],[-2,-9],[-5,-24],[-4,1],[-7,-6]] [/math]
  2. [math] [[5,-5],[-10,-9],[5,0],[4,-7],[-7,-6]][/math]
  3. [math] [[-1,5],[2,11],[11,24],[-4,1],[9,8]] [/math]
  4. [math] [[-5,-5],[-2,9],[5,24],[-4,-7],[7,6]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
Add. [math] [[4,9,-6],[-3,0,8],[2,2,5]] + [[-10, 2,6],[5,-7,-8],[2,12,-5]] [/math]
  1. [math] [[-6,11,0],[2,-7,0],[4,14,0]] [/math]
  2. [math] [[14,11,12],[8,-7,16],[4,14,10]] [/math]
  3. [math] [[-14, 7,-12],[-8,7,16],[0,-10,10]][/math]
  4. [math] [[-6,11],[2,-7],[4,14]] [/math]
Previous Page 1 of 7 Next
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.