Want to see correct answers?
Login or join for free!
  Algebra Worksheets
Looking for Algebra worksheets?
Check out our pre-made Algebra worksheets!
Share/Like This Page
Filter By Grade

Matrices Questions - All Grades

You can create printable tests and worksheets from these Matrices questions! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 5 Next
Grade 12 Matrices CCSS: HSN-VM.C.6
Which augmented matrix represents the system of equations [math]2x=8[/math] and [math]6=3y+x[/math]?
  1. [math][[2,8,,0],[6,3,,1]][/math]
  2. [math][[8,2,,0],[6,3,,1]][/math]
  3. [math][[0,2,,8],[6,3,,1]][/math]
  4. [math][[2,0,,8],[1,3,,6]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.7
If the matrix [math][[2,9,8],[0,3,4],[1,11,3]][/math] is multiplied by the scalar 5, what is the result?
  1. [math][[7,14,13],[5,8,9],[6,16,8]][/math]
  2. [math][[10,45,40],[0,15,20],[5,55,15]][/math]
  3. [math][[3,4,1],[11,3,2],[9,8,0]][/math]
  4. [math][[10,0,5],[45,15,55],[40,20,15]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.7
If the matrix [math][[27,9,12],[3,0,6],[18,21,3]][/math] is multiplied by the scalar [math]1/3[/math], what is the result?
  1. [math][[9,3,4],[1,0,2],[6,7,1]][/math]
  2. [math][[30,12,14],[6,3,9],[21,24,6]][/math]
  3. [math][[27,9,12],[3,0,6],[18,21,3]][/math]
  4. [math][[9,1,6],[3,0,7],[4,2,1]][/math]
Grade 11 Matrices CCSS: HSA-REI.C.5
Which of the following is an equivalent system of equations to the one given?

[math]3x+5y=5[/math]
[math]2x+y=8[/math]
  1. [math]-7x = -35, \ \ 2x+y=8[/math]
  2. [math]3x+5y=5, \ \ -13x = -17 [/math]
  3. [math]3x+5y=5, \ \ 2x=8[/math]
  4. [math]y=11, \ \ 2x+y=8[/math]
Grade 12 Matrices CCSS: HSA-REI.C.9
Find the inverse of the matrix [math][[1,2],[3,4]][/math].
  1. [math][[-2,1],[3/2,-1/2]][/math]
  2. [math][[4,-2],[-3,1]][/math]
  3. [math][[4,2],[3,1]][/math]
  4. [math][[1,-2],[-3,4]][/math]
Grade 11 Matrices
What is the rule for matrix multiplication?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix.
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix multiplication is always possible.
Grade 11 Matrices CCSS: HSN-VM.C.8
Evaluate. [math][(2,-3), (-4,2)] - [(-1,-5), (-3,2)][/math]
  1. [math][(3,2),(-7,4)][/math]
  2. [math][(-3,2),(-7,4)][/math]
  3. [math][(3,2),(-1,0)][/math]
  4. None of the above
Grade 11 Matrices
What is the rule for matrix addition and subtraction?
  1. The number of columns of the first matrix must equal the number of rows of the second matrix.
  2. The matrices must have the same dimensions.
  3. The matrices must have the same number of rows, but not columns.
  4. There is no rule. Matrix addition and subtraction is always possible.
Grade 12 Matrices CCSS: HSA-REI.C.9
Find the inverse of the matrix [math][[2,5],[1,6]][/math].
  1. [math][[42,-35],[-7,14]][/math]
  2. [math][[6/17,-5/17],[-1/17,2/17]][/math]
  3. [math][[2/7,5/7],[1/7,6/7]][/math]
  4. [math][[6/7,-5/7],[-1/7,2/7]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.10
The 5x5 identity matrix of looks like which of the following?
  1. [math][[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]][/math]
  2. [math][[0,0,0,0,1],[0,0,0,1,0],[0,0,1,0,0],[0,1,0,0,0],[1,0,0,0,0]][/math]
  3. [math][[0,0,1,0,0],[0,0,1,0,0],[1,1,1,1,1],[0,0,1,0,0],[0,0,1,0,0]][/math]
  4. A and B
Grade 11 Matrices CCSS: HSN-VM.C.7
For [math]A = [[16, 8, 32], [4, 0, 12], [8, 24, 20]] [/math], find [math]1/4 A[/math].
  1. [math] [[4, 2, 8],[4, 0, 12], [8, 24, 20]] [/math]
  2. [math] [[ 4, 8, 32],[1, 0, 12],[2,24,20]] [/math]
  3. [math] [[4,2,8],[1,0,3],[2,6,5]] [/math]
  4. [math]"Does not exist (because of 0 in matrix)"[/math]
Grade 12 Matrices CCSS: HSA-REI.C.9
Find the inverse of the matrix [math] [[10,3],[2,4]] [/math].
  1. [math][[5/17,3/34],[1/17,2/17]][/math]
  2. [math][[2/23,-3/46],[-1/23,5/23]][/math]
  3. [math][[2/17,-3/34],[-1/17,5/17]][/math]
  4. [math][[4,-3],[-2,10]][/math]
Grade 11 Matrices CCSS: HSN-VM.C.8
Evaluate. [math][(2, -3) , (-4, 2)][/math] + [math][ (-1, -5), ( 3, -2) ][/math]
  1. [math][(-1, -8), (-1, 0)][/math]
  2. [math][(1, -8), (-1,0)][/math]
  3. [math][(1, -8), (-7, 0)][/math]
  4. None of the above
Grade 12 Matrices CCSS: HSN-VM.C.6
Jack is keeping track of the scores for his favorite teams in a series of basketball games. He records the initials of the team and score for each game. Which matrix represents the data he collected?
Round 1
SC 67
RG 103
PD 89

Round 2
RG 109
SC 86
PD 111

Round 3
PD 42
SC 99
RG 121
  1. [math][[67,103,89],[109,86,111],[42,99,121]][/math]
  2. [math][[67,86,99],[103,109,121],[89,111,42]][/math]
  3. [math][[42,99,121],[111,86,109],[67,103,89]][/math]
  4. [math][[67,109,42],[103,86,99],[89,111,122]][/math]
Grade 11 Matrices CCSS: HSN-VM.C.8
Evaluate. [math][[1,2],[3,4]]+[[1,2],[3,4]][/math]
  1. [math][[2,4],[6,8]][/math]
  2. [math][[2,8],[6,4]][/math]
  3. [math][[8,2],[6,4]][/math]
Grade 12 Matrices CCSS: HSN-VM.C.8
Perform the indicated operations. If the matrix does not exist, choose impossible.

[math][[8,3],[-1,-1]]-[[0,-7],[6,2]][/math]
  1. [math][[-8,-10],[-7,-3]][/math]
  2. [math][[-3,10],[-7,8]][/math]
  3. [math]"Impossible"[/math]
  4. [math][[8,10],[-7,-3]][/math]
Grade 12 Matrices CCSS: HSA-REI.C.9
Find the inverse of the matrix [math][[0,6],[2,8]][/math].
  1. [math][[4/6,2/4],[2/12,6/0]][/math]
  2. [math][[-2/3,1/2],[1/6,0]][/math]
  3. [math][[0,1/2],[1/6,2/3]][/math]
  4. [math][[96,-72],[-24,0]][/math]
Previous Page 1 of 5 Next
You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.