Share/Like This Page

Common Core Standard HSF-IF.B.4 Questions

For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity.

You can create printable tests and worksheets from these questions on Common Core standard HSF-IF.B.4! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Grade 10 Functions and Relations CCSS: HSF-IF.B.4
For the absolute value function shown below, where is the function decreasing? Assume 1 unit intervals for both axes.
Graph - Absolute Function y=|1/2x|
  1. The function is never decreasing.
  2. For all values of x.
  3. [math]x>0[/math]
  4. [math]x<0[/math]
Grade 10 Quadratic Equations and Expressions CCSS: HSF-IF.B.4
Identify the axis of symmetry for the graph.
Graph - Quadratic Function y=2x^2
  1. x = 1
  2. x = 0
  3. y = 0
  4. none of the above
Grade 10 Quadratic Equations and Expressions CCSS: HSF-IF.B.4
Grade 11 Functions and Relations CCSS: HSF-IF.B.4
Grade 11 Functions and Relations CCSS: HSF-IF.B.4
Grade 10 Functions and Relations CCSS: HSF-IF.B.4
Given the function [math]f(x) = x^2 - 2x - 3[/math], for what interval(s) is [math]f(x) > 0 ?[/math]
  1. [math](-1,3)[/math]
  2. [math](-oo,-1) uu (3,oo)[/math]
  3. [math](-oo , 0)[/math]
  4. [math](-oo, oo)[/math]
Grade 10 Functions and Relations CCSS: HSF-IF.B.4
For the function [math]f(x) = -x^2 - 4[/math], for what interval(s) is [math]f(x) < 0 ?[/math]
  1. [math](-oo,-2) uu (2,oo)[/math]
  2. [math](-2,2)[/math]
  3. [math] (-oo,oo)[/math]
  4. [math](0,oo)[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math]f(x)=2cos(x)[/math] negative?
  1. [math]-3/4pi < x < -1/4pi, 1/4pi < x < 3/4pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 9 Quadratic Equations and Expressions CCSS: HSF-IF.B.4
Which function has a y-intercept of 4?
  1. [math]y = 2x^2 + 1[/math]
  2. [math]y = 2x^2 + 4x[/math]
  3. [math]y = 2x^2 - 4[/math]
  4. [math]y = 2x^2 + 4[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is slope of the function [math]f(x)=sinx[/math] positive?
  1. [math]0 < x < pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 10 Functions and Relations CCSS: HSF-IF.B.4
At what interval is slope of the function [math]y=-(x-2)^2[/math] positive?
  1. [math]x<0[/math]
  2. [math]x>0[/math]
  3. [math]x> -2[/math]
  4. [math]x<2[/math]
Grade 10 Functions and Relations CCSS: HSF-IF.B.4
At what interval is slope of the function [math]y=(x+2)^2[/math] positive?
  1. [math]x<0[/math]
  2. [math]x>0[/math]
  3. [math]x> -2[/math]
  4. [math]x<2[/math]
Grade 10 Trigonometry CCSS: HSF-IF.B.4
Given the domain [math]-pi < x < pi[/math], at what interval(s) is the function [math]f(x)=sinx[/math] negative?
  1. [math]0 < x < pi[/math]
  2. [math]-pi < x < 0[/math]
  3. [math]-1/2pi < x < 1/2 pi[/math]
  4. [math]-pi < x <-1/2pi,1/2pi< x< pi[/math]
Grade 9 Quadratic Equations and Expressions CCSS: HSF-IF.B.4
What is the x-coordinate of the vertex of the graph of [math]y = -2x^2 - x +8?[/math]
  1. [math]-1[/math]
  2. [math]-(1/4)[/math]
  3. [math](1/4)[/math]
  4. [math](1/2)[/math]

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options

You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.