Share/Like This Page

Common Core Standard HSF-BF.A.1a Questions

Determine an explicit expression, a recursive process, or steps for calculation from a context.

You can create printable tests and worksheets from these questions on Common Core standard HSF-BF.A.1a! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 4 Next
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2
Given the sequence defined by [math]a(n) = 3 + 5*2^n, \ n in NN, n >=1[/math], which of the following recursive formulas defines the same sequence? Assume for all sequences that [math]n in NN[/math].
  1. [math]t(1) = 13; \ \ t(n) = 3 + 5*2^(n-1), n>1[/math]
  2. [math]t(1) = 13; \ \ t(n) = 2 t(n-1), \ n>1[/math]
  3. [math]t(1) = 13; \ \ t(n) = 13 + t(n-1), \ n>1[/math]
  4. [math]t(1) = 13; \ \ t(n) = -3 + 2t(n-1), \ n >1[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Which of the following recursive functions defines the sequence [math]5,8,11,14,... ?[/math] Assume [math]n in NN[/math].
  1. [math]t(1) = 3; \ \ t(n) = t(n-1) + 5, \ n>1[/math]
  2. [math]t(1) = 5, \ \ t(n) = t(n-1) - 3, \ n>1[/math]
  3. [math]t(1) = 5, \ \ t(n) = t(n-1) + 3, \ n>1[/math]
  4. [math]t(2) = 8, \ \ t(n) = t(n-2) + 6, \ n>2[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Given the sequence [math]1,4,16,64,256,...[/math], which of the following correctly defines this sequence in a recursive form? Assume that [math]n in NN[/math].
  1. [math]t(1) = 1; \ \ t(n) = 4t(n-1), \ n>1[/math]
  2. [math]t(1) = 4; \ \ t(n) = 4t(n-1), \ n>1[/math]
  3. [math]t(1) = 1; \ \ t(n) = 1/4 t(n-1), \ n>1[/math]
  4. [math]t(1) = 1; \ \ t(n) = 2^(2(n-1)), n>1[/math]
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
What is the function rule of the total cost T(x) of x books, if each book costs $11.95?
  1. T(x) = 11.95x
  2. T(x) = 11.95 - x
  3. T(x) = x + 11.95
  4. T(x) = x - 11.95
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Find the recursive form of the sequence [math]10, 5, 0, -5, -10,...[/math] Assume [math]n in NN[/math].
  1. [math]t(1) = 10; \ \ t(n) = -t(n-1) + 5, \ n>1[/math]
  2. [math]t(1) = 10; \ \ t(n) = -5 + t(n-1), \ n>1[/math].
  3. [math]t(1) = 10; \ \ t(n) = 10 - t(n-1), \ n>1[/math].
  4. [math]t(1) = 10; \ \ t(n) = t(n-1) - 5, n>1[/math]
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Given the sequence [math]128, 64, 32, 16, 8, ...[/math] which of the following functions describes it? Assume [math]n in NN[/math].
  1. [math]t(1) = 128; \ \ t(n) = 2 t(n-1), \ n>1[/math]
  2. [math]t(1) = 128; \ \ t(n) = 128 - t(n-1), \ n>1[/math]
  3. [math]t(1) = 128; \ \ t(n) = t(n) - 1/2t(n-1), n>1[/math]
  4. [math]t(1) = 128; \ \ t(n) = 1/2 t(n-1), \ n>1[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Which of the following functions describes the sequence [math]18, 31/2, 13, 21/2, 8, ... ?[/math] Assume that [math]n in NN[/math].
  1. [math] t(1) = 18; \ \ t(n) = 43/50 t(n-1), n>1[/math]
  2. [math]t(1) = 18; \ \ t(n) = t(n-1) - 5/2, n>1[/math]
  3. [math]t(1) = 18; \ \ t(n) = t(n-2) - 5, n>2[/math]
  4. [math]t(1) = 18; \ \ t(n) = 5/2 - t(n-1), t>1[/math]
Grade 11 Functions and Relations CCSS: HSF-IF.A.2, HSF-BF.A.1, HSF-BF.A.1a
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-LE.A.2
Which of the following functions correctly describes the sequence [math]1,3,5,9,13,21,...?[/math] Assume that [math]n in NN[/math].
  1. [math] t(1) = 1, t(2) = 3; \ \ t(n) = 2t(n-2) + 3, n>2[/math]
  2. [math]t(1) = 1; \ \ t(n) = t(n-1) + 2, n>1[/math]
  3. [math]t(1)=1, t(2)=3; \ \ t(n) = t(n-2) + t(n-1) + 1, n>2[/math]
  4. [math]t(1) = 1; \ \ t(n) = t(n-1) + 2^(n-1), \ n>1[/math]
Grade 9 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
Troy wants to join Universal Gym. The gym charges a one-time membership fee of $50 and $24.50 per month. Write a function that represents this situation.
  1. [math]f(m) = 50m+24.50[/math]
  2. [math]f(m) = 50+24.50m[/math]
  3. [math]f(m) = 50m+24.50m[/math]
  4. [math]f(m) = 50+24.50[/math]
Previous Page 1 of 4 Next

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options

You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.