Share/Like This Page

Common Core Standard HSF-BF.A.1a Questions

Determine an explicit expression, a recursive process, or steps for calculation from a context.

You can create printable tests and worksheets from these questions on Common Core standard HSF-BF.A.1a! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 6 Next
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2
Given the sequence defined by a(n)=3+52n, n,n1, which of the following recursive formulas defines the same sequence? Assume for all sequences that n.
  1. t(1)=13;  t(n)=3+52n-1,n>1
  2. t(1)=13;  t(n)=2t(n-1), n>1
  3. t(1)=13;  t(n)=13+t(n-1), n>1
  4. t(1)=13;  t(n)=-3+2t(n-1), n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
A person saves $50 in the first week and increases their savings by $10 each week. Write a recursive function f(x) for the total savings after x weeks.
  1. f(x)=f(x−1)+50,f(1)=10
  2. f(x)=f(x−1)+50,f(1)=50
  3. f(x)=f(x−1)+10,f(1)=10
  4. f(x)=f(x−1)+10,f(1)=50
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
A student borrows $10,000 with an interest rate of 6% compounded annually. Write an explicit formula for the loan balance, B(t), after t years.
  1. B(t)=10000(1+0.06t)
  2. B(t)=10000(1.06)t
  3. B(t)=10000(1−0.06t)
  4. B(t)=10000(1.06t)
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Which of the following recursive functions defines the sequence 5,8,11,14,...? Assume n.
  1. t(1)=3;  t(n)=t(n-1)+5, n>1
  2. t(1)=5,  t(n)=t(n-1)-3, n>1
  3. t(1)=5,  t(n)=t(n-1)+3, n>1
  4. t(2)=8,  t(n)=t(n-2)+6, n>2
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Given the sequence 1,4,16,64,256,..., which of the following correctly defines this sequence in a recursive form? Assume that n.
  1. t(1)=1;  t(n)=4t(n-1), n>1
  2. t(1)=4;  t(n)=4t(n-1), n>1
  3. t(1)=1;  t(n)=14t(n-1), n>1
  4. t(1)=1;  t(n)=22(n-1),n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
A water tank starts with 1,000 gallons and loses 15 gallons every day. Write a recursive formula for the amount of water left, wn​, after n days.
  1. Wn=Wn-115,W0=0
  2. Wn=Wn-1+15,W0=1000
  3. Wn=Wn-115,W0=1000
  4. Wn=Wn-1+15,W0=0
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
What is the function rule of the total cost T(x) of x books, if each book costs $11.95?
  1. T(x) = 11.95x
  2. T(x) = 11.95 - x
  3. T(x) = x + 11.95
  4. T(x) = x - 11.95
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Find the recursive form of the sequence 10,5,0,-5,-10,... Assume n.
  1. t(1)=10;  t(n)=-t(n-1)+5, n>1
  2. t(1)=10;  t(n)=-5+t(n-1), n>1.
  3. t(1)=10;  t(n)=10-t(n-1), n>1.
  4. t(1)=10;  t(n)=t(n-1)-5,n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
A population of bacteria doubles every hour, starting with 100 bacteria. Write a function f(x) to represent the population after x hours.
  1. f(x)=1002x
  2. f(x)=2100x
  3. f(x)=100+2x
  4. f(x)=100xx
Grade 10 Functions and Relations CCSS: HSF-BF.A.1, HSF-BF.A.1a
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Given the sequence 128,64,32,16,8,... which of the following functions describes it? Assume n.
  1. t(1)=128;  t(n)=2t(n-1), n>1
  2. t(1)=128;  t(n)=128-t(n-1), n>1
  3. t(1)=128;  t(n)=t(n)-12t(n-1),n>1
  4. t(1)=128;  t(n)=12t(n-1), n>1
Previous Page 1 of 6 Next

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options