Share/Like This Page

Common Core Standard HSF-BF.A.2 Questions

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

You can create printable tests and worksheets from these questions on Common Core standard HSF-BF.A.2! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 6 Next
Grade 9 Sequences and Series CCSS: HSF-BF.A.2
Given the explicit form of the arithmetic sequence [math]a_n = -2 + 7n[/math], which of the following is the recursive formula for the same sequence?
  1. [math]a_1 = 5; \ \ a_n = a_{n-1} + 7, \ n>1[/math]
  2. [math]a_1 = 5; \ \ a_n = a_{n-1} - 2, \ n>1[/math]
  3. [math]a_1 = -2; \ \ a_n = a_{n-1} +7, \ n>1[/math]
  4. [math]a_1 = -2; \ \ a_n = a_{n-1} - 2, n>1[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
What is the recursive form of the sequence defined by [math]a_1 = 2; \ \ a_n = 5 a_{n-1}, \ n>1 ?[/math]
  1. [math]a_n = 2*5^n[/math]
  2. [math]a_n = 2*5^(n+1)[/math]
  3. [math]a_n = (2/5)*5^n[/math]
  4. [math]a_n = (2/5)*5^(n-1)[/math]
Grade 9 Sequences and Series CCSS: HSF-BF.A.2
What is the recursive form of the sequence [math]a_n = 16-20n ?[/math]
  1. [math]a_1 = -20; \ \ a_n = a_{n-1} + 16, \ n>1[/math]
  2. [math]a_1 = 16; \ \ a_n = a_{n-1} - 20, \ n>1[/math]
  3. [math]a_1 = -4; \ \ a_n = a_{n-1} + 16, \ n>1[/math]
  4. [math]a_1 = -4; \ \ a_n = a_{n-1} - 20, \ n>1[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
Given the recursive form of the sequence [math]a_1 = 2/7; \ \ a_n = 3a_{n-1}, \ n>1[/math], find the correct explicit form of this sequence.
  1. [math]a_n = 2/21 * 3^n[/math]
  2. [math]a_n = 2/7 * 3^n[/math]
  3. [math]a_n = 2/7 * 3n[/math]
  4. [math]a_n = (6/7)^{n-1}[/math]
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
For the sequence defined by the explicit formula [math]a_n=6⋅2^(n-1)[/math], what is the recursive formula?
  1. [math]a_1=6; a_n=2⋅a_(n-1[/math]
  2. [math]a_1=2; a_n=6⋅a_(n-1[/math]
  3. [math]a_1=6; a_n=6⋅a_(n-1[/math]
  4. [math]a_1=6 a_n=6⋅a_(n-1[/math]
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
Given the geometric sequence: 3, 6, 12, 24, … what is the recursive formula?
  1. [math]a_1=3; a_n=2⋅a_(n-1[/math]
  2. [math]a_1=6; a_n=3⋅a_(n-1[/math]
  3. [math]a_1=2; a_n=3⋅a_(n-1[/math]
  4. [math]a_1=3; a_n=3⋅a_(n-1[/math]
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
For the sequence defined by the explicit formula [math]a_n = 4n[/math], how could the same sequence be written recursively? (Select all that apply.)
  1. [math]a_1 = 4; a_n = a_(n−1) + 4 n >1 [/math]
  2. [math]a_1 = 0; a_n = a_(n−1) + 4 n >1 [/math]
  3. [math]a_1 = 4; a_2 =8; a_n = a_(n−1) + 4 n >1 [/math]
  4. [math]a_1 = 8; a_n = a_(n−1) + 4 n >1 [/math]
Grade 9 Sequences and Series CCSS: HSF-BF.A.2
For the sequence defined by the explicit formula [math]a_n = 7 + 3n[/math], what is the the recursive formula for this sequence?
  1. [math]a_1 = 7; \ \ a_n = a_{n-1} + 3, \ n>1[/math]
  2. [math]a_1 = 10; \ \ a_n = a_{n-1} + 3, \ n>1[/math]
  3. [math]a_1 = 3; \ \ a_n = a_{n-1} + 7, \ n>1[/math]
  4. [math]a_1 = 1; \ \ a_n = a_{n-1} + 7, \ n>1[/math]
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
What is the explicit form of the sequence defined by [math]a_1 = 1/2; \ \ a_n = 1/2 a_{n-1}, \ n>1 ?[/math]
  1. [math]a_n = (1/2)^{n-1}[/math]
  2. [math]a_n = (1/2)*(1/2)^(-n)[/math]
  3. [math]a_n = (1/2)^n[/math]
  4. [math]a_n = 1/2 * (1/2)^n[/math]
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
An arithmetic sequence has [math]a_3=10[/math] and [math]a_5=16[/math]. What is the explicit formula?
  1. [math]a_n=4+3n[/math]
  2. [math]a_n=2+4_n[/math]
  3. [math]a_n=4+2n[/math]
  4. [math]a_n=2+3n[/math]
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
If a geometric sequence has the recursive formula [math]a_1=5[/math]; [math]a_n=a_(n-1)⋅3[/math], what is the explicit formula?
  1. [math]a_n=5⋅3^(n-1 [/math]
  2. [math]a_n=3⋅5^(n-1 [/math]
  3. [math]a_n=5+3(n-1) [/math]
  4. [math]a_n=3+5(n-1 )[/math]
Previous Page 1 of 6 Next

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options

You need to have at least 5 reputation to vote a question down. Learn How To Earn Badges.