Share/Like This Page

Common Core Standard HSF-BF.A.2 Questions

Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms.

You can create printable tests and worksheets from these questions on Common Core standard HSF-BF.A.2! Select one or more questions using the checkboxes above each question. Then click the add selected questions to a test button before moving to another page.

Previous Page 1 of 6 Next
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Find the recursive form of the sequence 10,5,0,-5,-10,... Assume n.
  1. t(1)=10;  t(n)=-t(n-1)+5, n>1
  2. t(1)=10;  t(n)=-5+t(n-1), n>1.
  3. t(1)=10;  t(n)=10-t(n-1), n>1.
  4. t(1)=10;  t(n)=t(n-1)-5,n>1
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
What is the recursive form of the the geometric sequence defined by an=-53n-1?
  1. a1=-5;  an=3an-1, n>1
  2. a1=-15;  an=3an-1, n>1
  3. a1=3;  an=-5an-1, n>1
  4. a1=1;  an=5an-1, n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
A geometric sequence has the explicit formula: an=3·5¹
What is the recursive formula?
  1. a=3;an=5·an-1
  2. a=5;an=3·an-1
  3. a=1;an=5·an-1
  4. a=15;an=3·an-1
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
For the sequence defined by the explicit formula an=5+2n, what is the recursive formula?
  1. a1=5;an=an1+2,n>1
  2. a1=7;an=an1+2,n>1
  3. a1=2;an=an1+5,n>1
  4. a1=0;an=an1+5,n>1
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Given the sequence 128,64,32,16,8,... which of the following functions describes it? Assume n.
  1. t(1)=128;  t(n)=2t(n-1), n>1
  2. t(1)=128;  t(n)=128-t(n-1), n>1
  3. t(1)=128;  t(n)=t(n)-12t(n-1),n>1
  4. t(1)=128;  t(n)=12t(n-1), n>1
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
Given the geometric sequence defined by an=188n, what is the recursive form of this sequence?
  1. a1=1;  an=8an-1, n>1
  2. a1=18;  an=8an-1, n>1
  3. a1=8;  an=8an-1, n>1
  4. a1=8;  an=18an-1, n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
A car’s value decreases by 1,500 each year. If its initial value is 20,000, which explicit formula models its value after n years?
  1. an=20,0001,500n
  2. an=20,000+1,500n
  3. an=1,50020,000n
  4. an=1,500+20,000n
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
For the sequence defined by an=12·4n-1, how could the same sequence be written recursively? (Select all that apply.)
  1. a1=12;an=4·an-1n>1
  2. a1=2;an=4·an-1n>1
  3. a1=12;an=2·an-14n>2
  4. a1=4;an=12·an-1n>1
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Which of the following functions describes the sequence 18,312,13,212,8,...? Assume that n.
  1. t(1)=18;  t(n)=4350t(n-1),n>1
  2. t(1)=18;  t(n)=t(n-1)-52,n>1
  3. t(1)=18;  t(n)=t(n-2)-5,n>2
  4. t(1)=18;  t(n)=52-t(n-1),t>1
Grade 10 Sequences and Series CCSS: HSF-BF.A.2
For the geometric sequence defined by an=14(43)n, what is the recursive form of the this sequence?
  1. a1=1;  an=43an-1, n>1
  2. a1=14;  an=13an-1, n>1
  3. a1=14;  an=43an-1, n>1
  4. a1=13;  an=43an-1, n>1
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
Given the geometric sequence: 81, 27, 9, 3, … what is the explicit formula?
  1. an=81·(13)n-1
  2. an=27·(13)n-1
  3. an=81·3n-1
  4. an=3·81n-1
Grade 11 Functions and Relations CCSS: HSF-BF.A.2
A gym membership costs $40 initially, with a $5 monthly fee increase. Which recursive formula models the cost after n months?
  1. a1=40;an=an-1+5
  2. a1=45;an=an-1+5
  3. a1=40;an=an-1+40
  4. a1=5;an=an-1+40
Grade 10 Sequences and Series CCSS: HSF-BF.A.1, HSF-BF.A.1a, HSF-BF.A.2, HSF-LE.A.2
Which of the following functions correctly describe(s) the sequence 3,5,7,9,11,...? Assume that n. There may be more than one correct answer.
  1. t(1)=3;  t(n)=t(n-1)+2, n>1
  2. t(1)=3, t(2)=5;  t(n)=t(n-2)+4,n>2
  3. t(1)=3, t(2)=5;  t(n)=-t(n-1)+2t(n-2)+6, n>2
  4. t(1)=3;  t(n+1)=t(n)+2, n1
Previous Page 1 of 6 Next

Become a Pro subscriber to access Common Core questions

Unlimited premium printables Unlimited online testing Unlimited custom tests

Learn More About Benefits and Options